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Abstract

The purpose of this paper is to develop a theory, inspired from complex analysis,
of dual functions. In detail, we introduce the notion of holomorphic dual functions
and we establish a general representation of holomorphic dual functions. As an
application, we generalize some usual real functions to the dual plane. Finally,
we will define the integral trough curves of any dual functions as well as the dual
primitive.
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1 Introduction

A dual number z is an ordered pair of real numbers (z,y) associated with the real unit 1
and the dual unit e, where ¢ is an nilpotent number i.e. €2 = 0 and € # 0. A dual number
is usually denoted in the form

2 =T+ ye. (1)

Thus, the dual numbers are elements of the 2—dimensional real algebra
D=R]={z=z+ye|(z,y) €eR*e*=0and e # 0}, (2)

generated by 1 and €.
There are many manners to choose the dual unit number ¢, see for more details and
examples the references [1, 5.
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Addition and multiplication of the dual numbers are defined by
(@1 +y18) + (@2 +y28) = (214 22) + (y1 + 1) e, (3)
(LL’l + y1€) . (LL’Q + y2€) = (S(ZlLL’Q) + (Sl?lyg + Sl?gyl) E. (4)

This multiplication is commutative, associative and distributes over addition.

The algebra of dual numbers D has the numbers ey, y € R, as divisors of zero. No
number €y has an inverse in the algebra D.

One can verify, using (4), that

(z +ye)" = 2™ + na" lye. (5)
The conjugate z of the dual number z = x + ey is defined by
Z=u1x— ye. (6)

So
2z =% (7)

The division of two dual numbers can be computed as

21 A7 Ty (T1y2 — T2t1) €

= = ) (8)

29 Zao x3

Thus, the division Z is possible and unambiguous if 5 # 0.

Dual numbers can be represented as follows:

e Gaussian representation: z = x 4 ye.

e Polar representation: z = x (1 +cargz), where argz = £, & # 0, is the argument
of z.

It follows from this representation that
arg (21 + z9) = arg z; + arg z;. 9)

If z = x+ ey is a dual number, we denote by real and imaginary (dual) parts of z, the
real numbers
real (z) = x and Im (2) = y. (10)

The theory of algebra of dual numbers has been originally introduced by W. K. Clif-
ford [1] in 1873, and he showed that they form an algebra but not a field because only
dual numbers with real part not zero possess an inverse element. In 1891 E. Study [11]
realized that this associative algebra was ideal for describing the group of motions of
three-dimensional space. At the turn of the 20th century, A. Kotelnikov [6] developed
dual vectors and dual quaternions.

Algebraic study of dual numbers are the topic of numerous papers, e.g. [1, 5].

This nice concept has lots of applications in many fields of fundamental sciences;
such, algebraic geometry, Riemannian geometry, quantum mechanics and astronomy. It
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also arises in various contexts of engineering: aerospace, robotic and computer science.
For more details about the applications of dual numbers, we refer the reader to [2, 3, 4,
6, 8,9, 11, 12, 13]

However, up to now there are only a few attempts in the mathematical study of dual
functions (functions of dual variable). An early attempt may be due to E. E. Kramer [7]
in 1930. Later, in 2011, Z. Ercan and S. Yiice [3] obtained generalized Euler’s and De
Moivre’s formulas for functions with dual Quaternion variable.

In the study of dual functions, some natural questions raise:

e When and under what conditions a dual function is differentiable 7.

e It is possible to generalize some elementary results of complex analysis to dual
functions ?.

e How can one extend regularly real functions to dual variable 7.

The purpose of this work is to contribute to the development of dual functions and
we will try to answer some questions.

We start by generalizing the notion of holomorphicity to dual functions. To this aim,
as in complex analysis, we study the Differentiability of dual functions. The notion of
holomorphicity has been introduced and a general representation of holomorphic func-
tions was shown. Moreover, we provide the basic assumptions that allow us to extend
holomorphically real functions to the wider dual plane and we ensure that such an ex-
tension is meaningful. As an application, we generalize some usual real functions to dual
plane.

Further, we also outline the concept of integral along curves of dual functions as well
as the primitives of holomorphic dual functions.

2 Holomorphicity of dual functions

We start by giving some topological definitions and properties of the dual plan .
Let us introduce the mapping

P:D— Ry,
{ P(2) = [real (2)] . (11)

It is easy to check that

2Z="P(2)> VzeD.
P(Z1+ZQ>§P( )+P(22) Vzl,zQE]D),
P(leg)zp( ) (2) Vzl,ZQG]D (12)
P(Az) =|A\P(z) VZe]D)W\e]R
P(0) =

Particularly, P defines a semi-modulus in .
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Thus, we can define the dual disk and dual circle of centre zg = xg + yoe € D and
radius r > 0, respectively, by

D(zp,r)={z2=2+yceD|p(z—2) <7}

={z=x4yeeD| |z —x| <r, yeR}, (13)
S(z0,r)={2=04+yc€D|p(z —2) =1}
={z=0+yeeD| |z —xo| =1, yeR}. (14)

S (z9,7) is also called Galilean circle.
Definition 1 1. We say that Q2 is a dual subset of the dual plan D if there exists a
subset O C R such that
Q=0 xR. (15)

O is called the generator of €.

We say that €2 is an open dual subset of the dual plan DD if the generator of €2 is an
open subset of R.

2. Q) is said to be a closed dual subset of I if its complementary is an open subset of
D.

3. Q is said to be a connected dual subset of D if its generator is a connected subset
of R (real interval).

We discuss now some properties of dual functions. We investigate the continuity of dual
functions and the derivability in the dual sense, which can be also called holomorphicity,
as in complex case.

To this end, we will need these.

Definition 2 A dual function is a mapping from a subset 2 C D to D.

Definition 3 A dual function f defined on subset 2 C D is called homogeneous dual
function if

f(real (2)) € R.

In following definitions, we admit that D is provided by the usual topology of R2.
Let  be an open subset of D, zg = x¢ + yoe € 2 and f : 2 — D a dual function.
Definition 4 We say that the function f is continuous at zq if

lim f () = f (20) - (16)

Z—2z20

Definition 5 The function is continuous in €2 C I if it is continuous at every point
of Q.

Definition 6 The dual function f is said to be differentiable at zy = z + yoe (in the
dual sense), if the limit below exists

df . F () = f(2)

i =1 1

7z (70) = lim ———"——, (17)
% (z0) is called the derivative of f at the point zp.

If f is differentiable for all points in a neighborhood of the point zy then f is called
holomorphic at z.



Analysis of Dual Functions 41

Definition 7 The function f is holomorphic in €2 C D if it is holomorphic at every
point of €.
The definition of derivative in the dual sense has to be treated with a little more care
than its real companion; this is illustrated by the following example.
Example 1 The function f (z) = Z is nowhere differentiable. To this aim, a simple
calculation gives
f(z) = f(20) limz_z_o

lim —————+ =
220 Z— 20 Z—202 — R

. Zz — 202
= lim 5
z=z20 (x — x0)

— 1-92 Ilim Z4=%

E—T0,y—yo L — Lo
But this limit does not exist.
The basic properties for derivatives are similar to those we know from real calculus.
In fact, one should convince oneself that the following rules follow mostly from properties
of the limit.
Lemma 1 Suppose f and g are differentiable at z € D, and that ¢ € D, n € Z, and

h is differentiable at g (z) .
d(f+cg) _ df d
1 alred) — a2 + Cd—‘z.

. dz
d(f.g) _ df dg
2. S =9t fa
d(i) ﬁg_fﬂ L.
3. =% = == (we have to be aware of division by zero).
dhog __ dh dg
4 =g (9) &

In the following results we generalize the Cauchy-Riemann formulas to dual functions.
Theorem 2 Let f be a dual function in 2 C D, which can be written in terms of its
real and dual parts as
f=p+ey.
f is holomorphic in 2 C D if and only if the derivative of f satisfies

df _of _9p O
A At N Y 1
dz Or Ox * Bz (18)
Proof. Suppose that f is holomorphic in 2 and let 2y = z¢ + €y be an arbitrary
element of ().

By definition of derivative, we have

df [ tye) = f (o + yoe)
dz (20) = :clggclo (z + ye) — (2o + Yoe)

¢ (z,y) — (o, Yo)

’QD (x,y) B ’QD (anyO)

= lim +  lim €+
T—20,Y—Yo T — X T—20,Y—Y0 r — Ig
i ($ @ y) = (@, yg)) (y—w0) _
T—20,Y Yo (SL’ — xo)
dp

0
- (20,Y0) + a—fﬁ (20,Y0) € +

. (o (x,y) — ¢ (w0, yg)) (y — yo)g_
T—T0,y—Yo (x — x0)
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Then, the limit exists if and only if it does not depend on limit of the bounded ratio
i’:—g‘;. Hence, we have two cases to deal with
First case. Let us remark that

i P Y) = @oy) (Y —y) _ L P (2y) = ¢ (20:90) ¥~ Yo

T—20,Yy—Yo (x — ;1;'0)2 T—0,Y—Yo T — T T — g

Therefore, the above limit exists if

lim % (2,9) — ¢ (70,%0) = 8_45 (z9,y0) = 0. (19)

T—10,y—Y0 T — 0

This implies that
df ( ) oY ( )
dz =0 Ox 0, Yo) &-

Which gives (18).

Second case. We can also write

i @y —e (xo,yg)) W—%) _
T—T0,Y Yo ([L’ — ;1;'0) T—T0,Y Yo Y — Yo

¢ (z,y) — ¢ (20, %) (y—yo)2

r — Tg

Hence, the limit exists if

lim % (z,y) = ¢ (20, 40) _ 9 (20, Y0) = 0. (20)

T—0,Y—Y0 x — Xg oy

Clearly, (18) follows. This permits us to conclude the proof.

Corollary 3 Let f be a dual function in Q C I, which can be written in terms of
its real and dual parts as f = ¢ 4+ 1) and suppose that the partial derivatives of f exist.
Then,

1. f is holomorphic in €2 C D if and only if its partial derivatives satisfy

of of
- _ 2 21
gﬁx oy (21)
2. f is holomorphic in 2 C D if and only if the following formula holds
Qo _ O
{ % :%y’ : (22)
Jy :

Proof. 1. In view of (18), we can assert that the total differential of f can be written

_ (%9 O
df = (0:)3 + 8:55) d(x +e¢y)
_ (9 O Iy
= (8:6 + 8x€) dx + 8Iealy. (23)
This yields,
of _ 9o |
L =22 4 Zve,
{7y (24)
y — 2
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and so

Which eventually, combined with the second equation in (24), gives (21).
2. The formula (21) leads to

dp O \ __Op  OY
( o7 + o7 8) €= E.

Hence, (22) results.

Theorem 4 The function f is holomorphic in the open subset Q C D, (with respect
to the topology of R?), if and only if there exists a pair of real functions ¢ and k, such that
pe C (P, (Q)), Z—f is differentiable in P, (£2) and k is differentiable in P, (£2), where P,
is the first projection (parallel to the vertical axis), so that the function f can be written
explicitly

d
f(z)=px)+ <d—iy +k (:)3)) e Vze Q. (25)
Proof. Since f is holomorphic in €, we find, employing (22)

It follows that

o (z,y) = ¢ (x)
Hence
oy _ dp
oy dx
So, we find

This achieves the proof.

Remark 1 1. The formula (25) gives, taking into account the fact that &L = %,

i dp  (dp  dk
a: dr <d:v2y+ dz ) © (26)

In addition, if the functions ¢ and k are enough regular, we can generalize this relation
by recurrence.

2. If, in particular, f is an homogeneous function, formula (2.15) gives k = 0.

3. We remark that f is linear with respect to the variable y. Then, f can be holomor-
phically extended to the dual subset P, (2) x R.

The lemma below can be easily deduced.

Lemma 5 Let f be an homogeneous holomorphic function in the open dual subset
O xR C D. Then

T)=f(2) Vz€OxR. (27)
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We are interested now to some properties regarding constant dual functions. To this
aim, we need the following definition.

Definition 8 Let f be a dual function in the subset 2 C D.

1. f is said to be bounded in 2 if there exists a positive constant ¢ such that

If ()llge < ¢ Vz €, (28)
which means that
Je > 0| (realf (2))* + (Imf (2))* < ¢ Vz € Q. (29)

2. f is said to be bounded in the dual sense in € if there exists a positive constant ¢
such that
P(z)<c Vze. (30)

Proposition 6 1. Let f be an holomorphic function in the open dual subset O xR C
D. If there exists a connected and compact subset K, (bounded interval), contained in
O such that f is bounded in K. Then, there exists a differentiable real function £ and a
constant C'(K) , depending on K, such that the following formula holds

f(z)=C(K)+k(x)e Vz€ K xR. (31)
2. Let f be an homogeneous holomorphic function in the open connected dual subset

O xR CD. If fis bounded in O x R, then it is necessary constant in O x R.
Proof. 1. Making use (25), we have

f(z)zap(x)+<j—iy+k(x))8 Vz € O xR,

whence ¢ € C' (0), ;l—i is differentiable in O and k is differentiable in O.

Suppose that there exists a compact K contained in O such that f is bounded in K,
then there exists ¢ > 0 verifying, for all z € K and y € R,

o (2)] < ¢
‘(Z—iy+k(x))‘ < ¢

Thus, we can infer that ¢ is bounded in O and
dip
. ly| <c+k(z)] Vre K, VyeR.
Which asserts us, keeping in mind that k is continuous in K, that
Y11 < 4+ max |k (z)] Yz € K, Wy € R
— ¢+ max |k (x x .

Consequently, since O is connected, we deduce that ¢ is constant.
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2. Let f be an homogeneous holomorphic function in an open connected dual subset
O x R C . Then, by definition, we have k = 0.

Hence, since O x R is supposed to be connected, the result follows, by proceeding as
in the proof of the first assertion.

Proposition 7 If an holomorphic function f is defined in an open connected dual
subset O x R C D and % =0 for all zin O x R, then f is constant.

Proof. In view of Theorem 4, there exists a pair of real functions ¢ and k, where

pe C(0), Z—f is differentiable in O and k is differentiable in O, such that

f)=¢@)+ <Z—iy+k(x))a Vo e O.

Under this formula the derivative of f can be written

df de (d*e  dk
@—@%ﬁ“%‘f

From which, we can infer

dp

— =0 Vz €O,
dx
2o dk
d—£§y+%=o Vi€ O, Yy eR.

Then, since O is connected, we conclude that ¢ and k are constant.

The following Proposition shows that we can extend any regular real function to the
dual plane D.

Proposition 8 Let O an open subset of R, f € C! (O) and % is differentiable in O.
Then, there exists a unique homogeneous holomorphic function F : O x R C D — D
such that

F(z)=f(x) VYxeO. (32)

Moreover, if f € C¥(O) then F € C¥1 (O x R).

Proof. Considering the dual function F' given by

F(z):F(x+5y):f(x)+%ys Vz e O xR.

It is clear that F' is an homogeneous holomorphic function in O x R and verifies
F(z)=f(x) VYxeO.

Suppose that there exists another holomorphic function g in O x R such that
g(x)=f(z) VzeO.

It is well known that there exists a real function ¢, where ¢ € C'(0) and 2 is
differentiable in O, satisfying
dy

g(z) =9 (x)+ Ve



46 Farid Messelmi

Hence,
g(x)=p(x) YxeO,

and so
v(x)=f(x) VzeO.

The second assertion is an immediate consequence.

3 Usual dual functions

We can think of applying the statement of proposition 8, which asserts that any reg-
ular real function on its domain can be holomorphically extended to dual numbers, to
build homogeneous dual functions similar to the usual real functions, obtained as their
extensions.

3.1 The dual exponential function

The real exponential function e* defined for all € R can be extended to the dual plane
D as follows

exp(z) =e* =€ +e"ye =e" (1 +ye). (33)
The derivative of e* is
de* de® de”
= — 4+ —ye=¢€" D. 4
e d:)s+d9:y€ e* Vz € (34)
By recurrence, we find
d’ﬂ z
dze" =e* VzeD, YneN. (35)

Thus, any dual number z = x4+ ye € D, x # 0 has the exponential representation
z = peltr?)e, (36)

Some properties of the dual exponential function are collected in the following.
Proposition 9 1. 1122 = ¢*1e?2,

2. e = eiz

3.e##0 VzeD.

4. exp € C* (D).

3.2 The dual trigonometric functions

The trigonometric functions: sine, cos, tangent, etc, have their dual analogues. In fact,
we can define them by the formulas

sinz =sinz + (cosx)ye Vz € D, (37)

cosz = cosx — (sinx)ye Vz € D, (38)
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sin z
tanz = tanx — y2 €= VeeD—{(2k+1)7m, ke Z} xR.
cos?x COoS z
The next properties follow mostly from the previous definition.
Proposition 10 1. sin, cos and tan are 2w —periodic functions.

2. sin(—z) = —sinz, cos(—z) = cos z.

3. sin (21 + z2) = sin z; cos 23 + €os 21 sin zs.
4. cos (21 + 2z2) = cos 21 COS 2o — sin 21 sin 2.
5. sin? z + cos® z = 1.

6. cos(ex) =1, sin(ex) = ex.

7. ZZJ—O%ZZ = cos 2.

8. &% = —sinz.

9.

sin, cos € C* (D) and tan € C*° (D — {(2k + 1) 7, k € Z} x R).

3.3 The dual hyperbolic functions
The dual hyperbolic functions are defined by

sinh z = sinh x + (cosh x) ye Vz € D,

cosh z = cosh z + (sinh x) ye Vz € D,

sinh 2

tan z = Vz € D.

cosh x
These are equivalent, as in the real case, to

z —Zz

sinh z = e—Te Vz e D,

cosh z = % Vz € D,

z

— 6_Z
tanh 2z = c-° Vz € D.
e+ e *

The following collects some basic properties.
Proposition 11 1. sinh (—z) = —sinh z, cosh (—z) = cosh z.
2. cosh? z — sinh? z = 1.

3. cosh (ex) =1, sinh (ex) = ex.
4. 4sithz — cogh 2.

d. % = sinh 2.

6.

sinh, cosh, tanh € C* (D).

3.4 The dual logarithmic function

We define the dual Logarithmic function by the formula

log z = log x + %5 =logx + (argz)e Vz € Ry xR C D.

The dual Logarithmic function, satisfies some properties, given by

47

(39)

(46)



48 Farid Messelmi

Proposition 12 1. log (1) =
. log (z122) = log z1 + log (22) .
logz log( ) 2.

log (%) = alogz Vz € R: xR, Va € R.
dlogz_l

—log z.

log e ¢® (R} xR).
Example 2 We can evaluate the quantity 2 for all z = x +ye € RL x R and
w = a+ be € D as follows

@.Cﬂ.»b.ww

P — e(a—l—be)(log w—l—%s)

ef log z+ (ag +blog x)

elos® (1—{— (a +blog1’) )

4 Integration of dual functions

We begin integration by focusing on ”1—dimensional” integrals over lines.
At first sight, dual integration is not really anything different from real integration.
For a continuous dual-valued function f : [a,b] C R — D, we define

b

/f(t)dt:/real (f(t))dt+a/]m(f(t))dt. (47)

a

For a function which takes dual numbers as arguments, we integrate along a curve ~
(instead of a real interval). Suppose this curve is parameterized by v (t), a <t < b. The
following definition is used.

Definition 9 Suppose 7 is a smooth curve parameterized by v (t), a <t < b, and f
is a continuous dual function on 7. Then, we define the integral of f on v as

/ f(2)dz = / fly d”dt (48)

This definition can be easily and naturally extended to piecewise smooth curves. In
what follows, we will usually state our results for smooth curves, bearing in mind that
practically all can be extended to piecewise smooth curves.

The dual integral has some standard properties, most of which follow from real case.
The first property to observe is that the actual choice of parameterization of v does not
matter.

Proposition 13 Let v be a smooth curve and let f a continuous dual function on ~.
Then, the integral fy f () dz is independent of the parameterization of v chosen.

We give now the following Proposition, which is a direct consequence of the definition
of dual integral.

Proposition 14 1. Suppose 7 is a smooth curve, f and g are dual functions which
are continuous on vy and let ¢ € D. Then

/y(cf(z)—|—g(z))dz:c/Vf(z)dz—l—/vg(z)dz. (49)
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2. If v is parameterized by v (t), a < t < b, define the curve —y by —vy(t) =

v(a+b—t). Then
/_ f(z)dz= —/f(z) dz. (50)

3. If 71 and 7, are smooth curves so that v starts where v, ends then define the curve
~1 © 72 by following ~; to its end, and then continuing on v to its end. Then

[ 1= /V £ () d= + A £(2) d=. (51)

4. Suppose that v is a smooth curve parallel to the vertical axis, i.e. 7y is parameterized
by v(t) = (a,y(t)), a <t <band a € R, then

real (/ f(2) dz) =0, (pure dual number). (52)

Now, we claim and prove the following Theorem, which generalizes that of Cauchy-
Goursat to dual functions.

Theorem 15 Let O be an open connected subset of R and let f be an holomorphic
function in the dual subset O xR C ID. Then, the integral of f vanishes along any rectangle
contained in O x R.

Proof. To simplify the proof we restrict ourselves to the rectangle R = {z1, 29, 23, 24} ,
whence z1 = x4y, 20 = To+EY1, 23 = To+EYs, 24 = X1 +EY2, such that a < x1 <29 <D
and y; < yo.

As already known, there exists a pair of real functions ¢ and k, such that ¢ € C' (O),
j—ﬁ is differentiable in O and k is differentiable in O, satisfying

f(z)zap(x)+<fl—iy+k(x))€ Vz e O xR,

Then, the integral of f becomes

[ s - { ( gt k(o H (do + =dy)
[l

(d y+k(x )8}d$—|—6§0 x)dy

:/{mw(—yﬁk Hdﬁ«e # (@2) dy

1

—ﬂmw (j—jy2+k<x>) } dx—afso(xndy

= c(p(@2) =@ (@) +e(ya —uy1) @ (x2) —e (@ (22) — 0 (21)) Y2
—£ (Y2 —y1) o (21) .

Thus, [, f(z)dz=0.
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Theorem 16 Let v, and 7, be two homotopic smooth curves parameterized, respec-
tively, by 71 (t) and v, (), 0 < t < 1 such that 7; (0) = 72 (0) and v (1) = 72 (1) and H
denotes a regular homotopy between v, and =, defined by

H:[0,1]" — R,
H(t,0) =~ (t) Vte]|o,1],
H(t,0) = (t) Vte]|0,1], (53)

H (0,5) =71 (0) =2 (0) Vs € [0,1],
H(lvs) =N (1) =2 (1> Vs € [Ov 1]

Let f be an holomorphic function in a dual subset O x R containing the curves v; and
~9. If H has continuous second partial derivatives, then

[ﬂf(z)dz:[mf(z)dz. (54)

Proof. Let v, be the curve parameterized by H (t,s),0 < ¢ < 1. Consider the function

s) = f% f(z)dz
We will show that I is constant with respect to s. To do this, considering the derivative
of I. By some calculations, we obtain

dI
o = / f(H —dt

_ / <f’ (H (t. s))%—f‘z—i[ P (L) g’s;) dt

If we assume assumption that H has continuous second partial derivatives, the follow-
ing equality holds

1

T [(raen S pues) S a
_ j%(f(ﬂ(ts))aaf)dt

=1 () A )~ £ 010,9) D (0,5) =0,

This obviously completes the proof of the Theorem.

Corollary 17 Let f be an holomorphic function in a connected dual subset O x R
and v C O X R be a closed smooth curve. Then f f(z)dz=0.

Proof. It is enough to remark that O x R is snnply connected (with respect to the
topology of R?). Hence, the curve « is contractible, and so Theorem 16 affirms us that

[, f(z)dz=0.

Then
d[
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We introduce now the concept of primitive of dual functions.

Definition 10 Let O xR be an open subset of D. For any functions f, F' : OXxR — D,
if F'is holomorphic in O x R and Z—f = f(z) for all z € O xR, then F is a primitive of f
in O x R.

Theorem 18 Every holomorphic function in an open connected subset O x R of D
has a primitive.

Proof. Let f: O x R — D be an holomorphic function in O x R.

Fix 2o = xo + yoe € Int (O x R) and consider the dual function F' defined by

1
/z—zo (zo0+1t(z—2))dt Vz€ O xR.

0

Thus, F' possesses partial derivatives with respect to the variables z and y, given by

ox 2z

or _ /1( zo+tz—ZO))+(Z—Zo)tg—f(zo+t(z_20)))dta

1

OF d
En = 6/(f(20+t(z—ZO))+(Z—30)td_£(20+t(z_20))>dt'
0
We can infer
or _oF
oy  Ox’

Which implies that F' is holomorphic in O x R and its derivative is

dF OF

ar %:/1(f(z0+t(z—zo))+(z—zo)t;l—i(zojtt(z—zo)))dt

1

— /CZ(tf(20+t(2—20))>dt_f(z>‘

0

We conclude that F' is a primitive of f.
Theorem 19 Suppose f is continuous in an open connected dual subset of O xR C D

and
/ f(z)dz=0, (55)

for all smooth closed paths v C O x R. Then f has a primitive in O x R.
Proof. Fixing a point zg = xg + yoe € Int (O x R). For each point z € O x R, let ~,
be a smooth curve in O x R from z; to z.

Introducing the function
~ [ )
Yz
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We obtain the following both equalities (56) and (57), by integrating along, respec-
tively, the two closed paths below and using the hypothesis (55),

{[zo, ] x {yoe} U{x} X [yog, ye] U —7.},
Hzo} < [yoe, yel U [0, 2] x {ye} U —.},

/f(s+y05)ds+/f(:c+t5)adt—F(z):0, (56)
/f(x0+t5)adt+/f(s+ya)ds—F(z):0. (57)

Owing (56) and (57), we deduce that I’ possesses partial derivatives with respect the
variables x and y, given by

F F
= 1) and G —cf (o
This yields
oF _or
or Oy’
Which implies, making use (21), that £ is holomorphic in O x R and its derivative is
dF  OF
b= or f(z).

We establish here a general representation of primitives of any holomorphic function.
Proposition 20 Let O x R be an open connected subset of D. Let f: O x R — D
be an holomorphic function in O x R given by the representation
dy

f(z):ap(x)jt(%y%—k‘(:c))s Vze O xR. (58)

Then, the primitive of f can be calculated via the following formula

F(z):/f(z)dz:/<p(:c)dm+(ap(:c)y+/k(x)dx)€+c Ve OxR. (59

where ¢ is an arbitrary dual constant.

. o). . dF .
Proof. Let I be primitive of f, ie. &= = f.

It is well known that there exists a pair of real functions ¢ and k, such that ¢ € C' (O),

;l—i is differentiable in O and k is differentiable in O, satisfying
dy
F(z)=v¢(z)+ %err(:c) e Vze O xR

_dF_@F _dy d*1 dr
f(Z)—E—%—%%—(ﬁy%—%)s Vz e O x R.
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Which implies, employing (58)

W v (xz) VzeO,
dx
d? dr d
d—:;fy—f—% = di +k’() Ve € O, Yy € R.

Hence, for every =z € O

where ¢; and ¢y are two real constants.
Thus, we obtain

Fz) = (/gp(m)dz+cl)+<<py+/k:(x)d:v+cz>5
_ /ap(x)dx+(cp(x)y+/k(x)dx)5+(cl+025) Ve O xR,

This completes the proof of the Theorem.

We are now ready to state the following Theorem, showing that the integral of holo-
morphic functions along any path dependent only on the extremities.

Theorem 21 Suppose O x R is an open connected dual subset. Let f: O xR — D
be an holomorphic function in O xR, v C O xR be a smooth curve with parameterization
v (t), a <t <b. If Fis any primitive of f in O x R then

/ f(2)dz=F(v(b)) - F (7 (a). (60)

Proof. By definition of the integral along the curve v, one can check that

/{f(z)dz = /—dz
:/b dvdt
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