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1 Introduction

A multilevel converter, which includes an array of power semiconductors and capacitor
voltage sources, can synthesize a desired output voltage from several levels of DC voltages
as inputs. With an increasing number of DC voltage sources, the converter output voltage
waveform approaches a nearly sinusoidal waveform while using a fundamental frequency
switching scheme [1]. The primary advantage of multilevel converters is generating high
voltage with smaller steps at the output while the power semiconductors must withstand
only reduced voltages; this will results in high power quality, lower harmonic components,
better electromagnetic compatibility, and lower switching losses [1, 2, 3]. One of funda-
mental multilevel topologies is known as Multicell Converter, including Flying Capacitor
Multicell (FCM) or serial multicellular, Stacked Multicell (SM), and Cascaded Multicell
(CM) converters.
The serial multicellular converter has gained substantial interest in high power systems.
It allows to synthesize high voltage multilevel waveforms using low voltage power semi-
conductors. The first serial multicellular converter was introduced in [4]. The power
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structure is an imbricated association of two or more commutation cells and flying capac-
itors, where the flying capacitor voltages determine the output waveform quality and the
safe converter operation. However, a high number of voltage levels increases the control
complexity and introduces a capacitor voltage imbalance problem [1].
In recent decades, it was discovered that most of static converters were the seat of un-
known nonlinear phenomena in power electronics [5, 6, 7, 8]. It is for example the case
of multicellular choppers that can exhibit unusual behaviors and sometimes chaotic be-
haviors. Obviously, this may generate dramatical consequences. However, the usually
averaged models do not allow to predict nonlinear phenomena encountered. By nature,
these models obscure the essential nonlinearities [9]. To analyses these strange behaviors,
it is necessary to use a nonlinear hybrid dynamical model [7], [10]. There have been
many methods for detecting chaos from order [11, 12]. Each of these methods has its
advantages and drawbacks in classifying the attractors. The main purpose of the present
paper is to propose a framework of chaotic behavior study for two-cell chopper with cubic
nonlinearity load. The paper is structured as follows. Section 2 deals with the modeling
process. The electronic structure of the serial multicell chopper is addressed and the ap-
propriate mathematical model is derived to describe the dynamics of the chopper. Two
cells chopper modeling is then considered. Chaotic behavior and simulation results are
presented in Section 3. Finally, some conclusion and remarks are reported in section 4.

2 Studied multicellular: A general model of descrip-

tion

The general structure of the studied multicellular converter is presented in figure 1. It is
composed of p-cells. Each cell contains two complementary power electronic components
controlled by a binary switch. That means that if the upper switch of the kth cell is closed
uk = 1 and the lower switch is open. The multicellular converter cells are associated in

Figure 1: Studied p-cells converter.

series with a RL load and the cells are separated by capacitors that can be considered as
continuous voltage sources [13, 14]. Thus, the converter has p−1 floating voltage sources.
In order to ensure normal operations, it is necessary to guarantee a balanced distribution
of the floating voltages VCk

= kE
p

. The output voltage VS can attend p voltage levels
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(E
p
, ..., (p− 1)E

p
, E)[14].

Note that the chopper, which has a purely dissipative load, cannot generate a chaotic be-
havior. Nevertheless, it is well known from [15] that power converter, when it is connected
to nonlinear load may have a chaotic behavior. In this paper, we study the overlapping
operation of a converter with two-cells (figure 2). Its function is to supply a passive load
(RL) in series with another nonlinear load connected in parallel with a capacitor (figure
2) [9] The state equations describing the circuit are as follows:

Figure 2: Two-cells converter.


LdiL

dt
= (u2 − u1)vC − vCl

−RiL + u2E
C dvC

dt
= (u2 − u1)iL

Cl
dvCl

dt
= iL − g(vCl

)

(1)

where g(vCl
) is a piecewise-linear function defined by

g(vCl
) = GbvCl

+ 1
2
(Ga −Gb)(|vCl

+ 1| − |vCl
|)

and vC , vCl
, and iL, denote voltage across C, voltage across Cl, and current through

L, respectively. Figure 3 shows the chaotic attractor observed by solving (1) with C =
0.1µF,Cl = 40µF, L = 50mH,R = 10Ω, E = 100V,Ga = −1.5, Gb = 0.5 Figure 3(a) -
(c) are the projections of the attractor onto the (iL, vC , v)-plane, (v, vC)-plane, and the
nonlinear function, respectively.
Let’s replace the piecewise -linear function with a cubic polynomial function and observe
the behavior of the converter (figure 4):

g(vCl
) = a.vCl

+ b.vCl

3

with a = −0.599, b = 0.0218
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Figure 3: Attractor of of equation 1.

Figure 4: Characteristic i− v of nonlinear load with a cubic nonlinearity

3 Bifurcation and chaos in the two cell converter

with a cubic nonlinearity

The state equations for two cells converter in Figure 1 with a cubic nonlinearity are as
follows 

LdiL
dt

= (u2 − u1)vC − vCl
−RiL + u2E

C dvC
dt

= (u2 − u1)iL
Cl

dvCl

dt
= iL − g(vCl

)

(2)

where
g(vCl

) = a.vCl
+ b.vCl

3

with a = −0.599, b = 0.0218
Rescaling equation (2) as iL = x1G, vC = x2, vCl

= x3, G = 1
R
, t = C

G
τ and then redefining

τ as t the following set of normalised equation are obtained.
ẋ1 = β(−γx1 + εx2 − x3) + αE
ẋ2 = εx1
ẋ3 = p(x1 − g(x3)

(3)
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where ε = u2 − u1, p = C
Cl
, β = C

LG2 , γ = RG,α = βu2. The circuit parameters used are

rescaled as : p = 25.10−4, β = 2.10−4, γ = 1.
The system has the following equilibrium:
Case 1 : ε = 1, i.e., u2 = 1, u1 = 0, ⇒ α = β

E1 =

 0
−E
0

 =

 0
−1500

0

 ;E2 =

 0√
−a

b
− E√
−a

b

 =

 0
−1497.7581

5.2418

 ,

E3 =

 0√
−a

b
− E

−
√
−a

b

 =

 0
−1505.2418
−5.2418

 .

Case 2 : ε = −1, i.e., u2 = 0, u0 = 0, ⇒ α = 0

E4 =

 0
0
0

 ;E5 =

 0
−
√
−a

b√
−a

b

 =

 0
−5.2418
5.2418

 ;E6 =

 0√
−a

b

−
√
−a

b

 =

 0
5.2418
−5.2418


Case 3 : ε = 0, i.e u2 = 1, u0 = 1, ⇒ α = β

E7 =

 1459.2
x2

40.8278

 ;E8 =

 1520.4 + 35.613i
x2

−20.4139− 35.6170i

 ;E9 =

 1520.4− 35.613i
x2

−20.4139 + 35.617i


Let us study the stability of different equilibrium points. The Jacobian matrix is

defined as

J =

 −βγ βε −β
ε 0 0
p 0 −ap− 3apx23

 =

 −2.10−4 −2.10−4ε −2.10−4

ε 0 0
25.10−4 0 −14.975.10−4 − 44.925.10−4x23



• For ε = ±1
The eigenvalues are:

i If x3 = 0; λ1 = −0.0001 + 0.0142i;λ2 = −0.0001 − 0.0142i;λ3 = −0.0015.
All the eigenvalues have their real negative part. Therefore, the equilibrium
E1, E2, E3, E4, E5 and E6 are asymptotically stable.

ii If x3 = ±
√
−a

b
= ±5.2418; λ1 = −0.0001+0.0141i;λ2 = −0.0001−0.0141i;λ3 =

−0.001249. All the eigenvalues have their real negative part. Therefore, the
equilibrium E1, E2, E3, E4, E5 and E6 are asymptotically stable.

• For ε = 0
The eigenvalues are:

i If x3 = 0; λ1 = −0.8488.10−3+0.2813.10−3i;λ2 = −0.8488−0.2813.10−3i;λ3 =
0. Here λ1 and λ2 have their real negatives part and λ3 is null. Therefore, the
equilibrium E7, E8, and E9 are unstable.
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Figure 5: Attractor of equation 1 with a cubic nonlinearity

ii If x3 = ±
√
−a

b
= ±5.2418; λ1 = −0.0002;λ2 = −0.1249;λ3 = 0. Here

λ1 and λ2 are the negative reals and λ3 is null. Therefore, the equilibrium
E7, E8, and E9 are unstable.

Figure 5(a)-(f) shows the bifurcation sequence with respect to R and the chaotic
attractors Note from these pictures that there is a period-doubling route to chaos similar
to that observed from two cell converter with a piecewise-linear function [16].

4 Conclusion

It is well known that the multicellular converter connected to a nonlinear load can exhibit
a wide variety of nonlinear behaviors. Though most of the interesting chaotic phenomena
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can be described by multicellular converter with a piecewise-linear function. The smooth
nonlinearity with a cubic polynomial presented in this paper contributes a robust model.
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