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Abstract: In this paper, a detailed analysis of the behavior of Peter-De-Jong map
using the modified 0-1 and 3ST tests is presented. The results show that both tests
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1 Introduction

With the discovery of chaos phenomenon in 1963 by Edward Lorenz [19], the field of non-
linear dynamics has attracted much attention of researchers around the world, leading
thus to numerous publications [17, 1]. This phenomenon, owing to its remarkable proper-
ties such as ergodicity, extreme sensitivity to initial conditions and control parameters of
system, etc. [17, 23], is applying to diverse areas of science as electronic, biology, secure
communication, economy, meteorology, etc. Therefore, the determination of regular or
chaotic nature of dynamical systems becomes crucial.

Many tools to characterize chaos in these systems have been proposed since long time
[1, 2, 9, 14]. We can sort them in two categories: the qualitative methods and quantitative
methods. As qualitative method, we can quote: the phase portrait and the bifurcation
diagram. This latter is obtained by representing the states of system when one of the
control parameters varies. These two techniques just allow us to have a certain idea on
the behavior of the system, and are based on visual perception that can prove to be
wrong. As quantitative method, we have: the SALI method (Small Alignment Index)
[21], the Largest Lyapunov Exponent [24], Entropy [13], the Fast Lyapunov Indicator
[8], the Dynamic Lyapunov Indicator [25], the Delay Vector Variance method [15], and
so on. However, most of these techniques exhibit practical limitations since they fail
to detect chaos for a large class of dynamical systems (non-universality of the tests),
require the absolute knowledge of mathematical equations governing the dynamics of the
systems (impossibility to handle the experimental data), require a large amount of data
which is expensive in computational time, fail to analyze the time series contaminated
by noise, complexity of test algorithm, etc. Despite of a lot of efforts devoted, one of the
major challenges in the field of characterization of nonlinear dynamical systems remains
to propose a test that can overcomes all these limitations.

In a recent past, a new test allowing detection of regular or chaotic nature in deter-
ministic dynamical systems has been proposed by Gottwald and Melbourne, the 0-1 test
[10, 12]. It is a binary test which takes in input, the time series data of the deterministic
dynamical system and returns 0 or 1 according that the dynamics is respectively regular
or chaotic. It does not require the prior knowledge of mathematical equations governing
the dynamics of system and the phase space reconstruction which is quite complex [12].
In addition, it is robust to the presence of noise and it is easy to implement. The 0-1 test
has been successfully applied to diverse type of system [20, 22, 4, 5, 18] and its reliability
has been proved [16, 11]. However, the main disadvantages of this test are: it requires a
large amount of data to perform well and its algorithm is based on computing of several
multiplications and integrals which are expensive in computation time; it equally fails to
detect the nature of the systems when the data are oversampled; the 0-1 test does not
also allows distinction between periodic and quasi-periodic behaviors.

In order to overcome the drawbacks of the 0-1 test, two other new tests have recently
been proposed by Fouda and his coworkers. These tests are: the modified 0-1 test [6]
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and the Three-State test (3ST) [7]. Their reliability should be support by testing them
on large and different classes of dynamical systems. In this paper, these two methods
are clearly presented and extended to time series data generated by Peter-De-Jong map.
We use here this kind of map because it exhibits several complex types of attractors for
different set of parameters. The rest of paper is structured as follows: in Section 2, we
briefly study the modified 0-1 test. Section 3 is devoted to a detailed study of 3ST test.
The Section 4 is consecrated first to the presentation of the Peter-De-Jong map, then
we apply the modified 0-1 and 3ST tests to data generated by this map. The results
are shown and discussed in this section. Section 5 shows the speed performance of the
modified 0-1 and 3ST tests compared to the one of 0-1 test. Finally, Section 6 includes
the conclusion of this work.

2 Description of the modified 0-1 test

The modified 0-1 test [6] is a binary test that takes in input the sub-observable and
returns 0 or 1 according that the dynamics is respectively regular or chaotic. Here, the
sub-observable is defined by mapping exclusively the local maxima and minima (extrema)
of the observable. These extrema are computed by detecting the sign changes in the
first derivative of the observable. We recall that, the observable is the time series data
generated by the underlying dynamical system. This modification does not change the
dynamic of system. Therefore if the observable is regular, the sub-observable is also
regular and if it is chaotic, the sub-observable remains chaotic. In addition of all the
advantages of the traditional 0-1 test, the modified 0-1 test successfully detects chaos in
oversampled data [6]. The implementation of modified 0-1 test is given below [6]:
Given an observable φ(j) with j = 1, 2, · · · , N , we first define the sub-observable ψ(k)
with k = 1, 2, · · · , L < N , which is a vector consisting by the local maxima and minima
of the entire observable φ(j). Then, we compute the translations variables p(n) and q(n)
of ψ(k). They are defining as

p(n) =
n∑
k=1

ψ(k) cos(kc) (1)

and

q(n) =
n∑
k=1

ψ(k) sin(kc) (2)

where c ∈ (0, π) is the sampling frequency of the time series and n = 1, 2, · · · , L.
The plot of p− q diagram allows us to have a certain idea on the behavior of the system.
If the motion is a torus, the dynamic is regular. If it behaves like a Brownian motion, the
dynamics is said to be chaotic.
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The behavior of p(n) and q(n) can be characterized by computing the mean square dis-
placement (MSD) defined as:

M(n) = lim
L→∞

1

L

L∑
k=1

[(p(k + n)− p(k))2 + (q(k + n)− q(k))2] (3)

where n = 1, 2, · · · , L/10.
In order to remove the oscillatory component of M(n), the modified mean square dis-
placement is calculated as follows [12]:

D(n) = M(n)− Vosc(n) (4)

where

Vosc(n) = Eψ)2
1− cos(nc)

1− cos(c)
(5)

and

Eψ = lim
L→∞

1

L

L∑
k=1

ψ(k) (6)

Vosc is the oscillatory component of M(n) and Eψ the average of the sub-observable.
We will use Eq. (4) below to plot the MSD. When this latter is bounded in time, the
dynamics of the system is called regular whereas if it grows linearly in time, the dynamics
is said to be chaotic.
Finally, we compute the asymptotic growth rate Kc of the MSD on which the test is
based. There are two methods to calculate Kc: the regression method and the correla-
tion method. We will use the second method since it allows a better convergence of the
asymptotic growth rate. It is given by:

Kc =
cov(ξ,∆)√
var(ξ)var(∆)

(7)

where ξ = 1, 2, · · · , L/10 and ∆ = D(1), D(2), · · · , D(L/10) are the vectors.
However for some isolated values of c (resonances values), the test fails to detect the
dynamics of system. To avoid that, Kc is computed for Nc values of c for a same parameter
value (Nc = 100, is sufficient in practice); the final asymptotic growth rate K is computed
as the median of Nc values of Kc. If Kc ≈ 0, the dynamics of the system is said to be
regular whereas if Kc ≈ 1 it is known as chaotic.

Despite of the improvement of the 0-1 test, the modified 0-1 test does not allow to
distinguish between periodic and quasi-periodic motions. In order to overcome this limi-
tation, another test for chaos detection in discrete dynamical systems has been proposed;
it is the 3ST test.
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3 Description of the three state test (3ST)

The 3ST test [7] is another technique that allows chaos detection in discrete dynamical
systems. It is based on the pattern analysis of data series. It studies the distribution of
the system states in a data series as a function of time. The 3ST considers the properties
of periodic and quasi-periodic signal for determining whether the dynamics of a system is
regular or chaotic [7]. In addition to the afore-mentioned advantages of the 0-1 test, the
3ST test has been developed to make a clear distinction between periodic, quasi-periodic
and chaotic behaviors; it has also been developed for real time application due to the
fact that its implementation most use addition and subtraction operators; and finally for
automating the detection of the period doubling route to chaos. The implementation of
3ST test is shown below [7]:
given an observable to be characterized xj(k) = Φ(x(k)) with k ∈ N, x(k) = (x1, x2, · · ·-
, xM)(k) the state vector, 1 ≤ j ≤ M ; for determining its patterns, we define uj = g(xj)
which is the time series data sorted by ascending order with g a function; then we also
define vj = q(uj) = q(g(xj)) representing the distribution of indices outputting the initial
positions of the values of uj in xj.
In order to take into account the time dependence of vj(k,N) (N being the length of time
series data), the largest slope (LS) is defined as pattern characteristic as follows:

LS(n) = max
1≤k≤N−1

(vj(k + 1, N)− vj(k,N)) (8)

It is then possible to use its mean square error σLS(N, n) for chaos detection in time series
data as follows:

σLS(N, n) =

√√√√ 1

N

p∑
j=0

(LS(jN0 + n)− LS)2 (9)

with

LS =
1

N

p∑
j=1

LS(jN0 + n) (10)

where N = pN0 + n is the length of data series, N0 the integration step and p a natural
number different from zero. σLS(N, n) measures the ability of a dynamical system to
generate new patterns as the time is increasing. n is the smallest observation duration
for the LS to be well evaluated and should verify the relation n� N . According to the
behavior of LS, σLS(N, n) is bounded if the underlying dynamics is non chaotic. For this
purpose, we define

µ(N, n) =
log(1 + σLS(N, n))

logN
(11)

then
K(n) = lim

n→+∞
µ(N, n) (12)
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K is the asymptotic growth rate of the mean square error of LS. K is equal to zero in the
case of periodic and quasi-periodic motions and greater than zero in the case of chaotic
motion.

In order to distinguish periodic from quasi-periodic motions, the global derivative of
µ(N, n) is computed. Its sign can then allow distinguishing these two behaviors. This
global derivative is defined as:

λ(n) = lim
n→+∞

m−1∑
k=1

(µ(Nk+1, n)− µ(Nk, n)) (13)

where N1 � Nm. N1 is the smallest integration duration and Nm is the greatest one. In
practice, choose the time delay n ≤ N1/2 leads to good results. λ is the periodicity index
and allows characterizing regular and chaotic dynamics. The 3ST test is based on its sign:
λ(n) < 0 for quasi-periodic behavior, λ(n) = 0 for periodic behavior and λ(n) > 0 for
chaotic behavior. Thus, the 3ST as indicated by its name allows to have in output three
main parameters which are: L the cycle of periodic orbits, K the asymptotic growth rate
of the largest slope and λ the periodicity index.

Moreover, 3ST like other chaos detection tools is extremely sensitive to small change
in the input time series. To make it more robust to the presence of noise, an absolute
threshold α has been introduced on the input time series such that two states x̃(k) and
x̃(j) are assumed to be different if and only if |x̃(k) − x̃(j)| ≥ α. The effectiveness
of the studied tests is shown by applying them to time series data generated from the
Peter-De-Jong map.

4 Peter-De-Jong map: Application of the modified

0-1 and 3ST tests

The Peter-De-Jong map is a pair of difference equations suggested by Peter-De-Jong and
so named after him [3]. It is a chaotic system that appears simple, but exhibiting several
complex types of attractors, corresponding to different sets of parameters. The map is
described as: {

xn+1 = sin(ayn)− cos(bxn)
yn+1 = sin(cxn)− cos(dyn)

(14)

where a, b, c and d are the parameters of the system.
Below, different sets of these parameters are presented. For each set, we evolved the map
(Eq. (14)) and analyzed the obtained time series data through the modified 0-1 and 3ST
tests. The results are compared to those of the ordinary 0-1 test and phase portrait plot
as shown in Fig. 1 to Fig. 10 below. Also, the values of K by 0-1 test, Kmod by modified
0-1 test, K3ST and λ for 3ST are given for each set of parameters. We used an input
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Figure 1: Plot of (a) phase portrait, (b) p-q diagram for the modified 0-1 test, (c) p-q
diagram for the 0-1 test, (d) mean square displacement for the modified 0-1 test and (e)
mean square displacement for the 0-1 test. The parameter values are: a = 2.033372,
b = −0.78980076, c = −0.5964787, d = −1.7829015. K = 0.9974; Kmod = 0.9988;
K3ST = 0.8225; λ = 0.0983.
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Figure 2: Plot of (a) phase portrait, (b) p-q diagram for the modified 0-1 test, (c) p-q
diagram for the 0-1 test, (d) mean square displacement for the modified 0-1 test and (e)
mean square displacement for the 0-1 test. The parameter values are: a = 1.76, b =
1.66571, c = −0.86114, d = 0.59714. K = −0.0055; Kmod = −0.0668; K3ST = 0.4537;
λ = −0.0617.
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Figure 3: Plot of (a) phase portrait, (b) p-q diagram for the modified 0-1 test, (c) p-q
diagram for the 0-1 test, (d) mean square displacement for the modified 0-1 test and (e)
mean square displacement for the 0-1 test. The parameter values are: a = 0.973894,
b = 1.66504, c = −0.860796, d = 2.10487. K = 0.9937; Kmod = 0.9991; K3ST = 0.8211;
λ = 0.1015.
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Figure 4: Plot of (a) phase portrait, (b) p-q diagram for the modified 0-1 test, (c) p-q
diagram for the 0-1 test, (d) mean square displacement for the modified 0-1 test and
(e) mean square displacement for the 0-1 test. The parameter values are: a = 2.07345,
b = 1.66504, c = −0.860796, d = 2.10487. K = 0.9996; Kmod = 0.9905; K3ST = 0.8263;
λ = 0.0953.
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Figure 5: Plot of (a) phase portrait, (b) p-q diagram for the modified 0-1 test, (c) p-q
diagram for the 0-1 test, (d) mean square displacement for the modified 0-1 test and
(e) mean square displacement for the 0-1 test. The parameter values are: a = 1.07345,
b = 2.785398, c = 1.34786, d = 1.10487. K = −0.0033; Kmod = −0.00015; K3ST = 0;
λ = 0.
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Figure 6: Plot of (a) phase portrait, (b) p-q diagram for the modified 0-1 test, (c) p-q
diagram for the 0-1 test, (d) mean square displacement for the modified 0-1 test and
(e) mean square displacement for the 0-1 test. The parameter values are: a = 2.89027,
b = 1.5708, c = −0.314159, d = 2.10487. K = 0.9950; Kmod = 0.9821; K3ST = 0.8241;
λ = 0.0966.
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Figure 7: Plot of (a) phase portrait, (b) p-q diagram for the modified 0-1 test, (c) p-q
diagram for the 0-1 test, (d) mean square displacement for the modified 0-1 test and (e)
mean square displacement for the 0-1 test. The parameter values are: a = 1.7843, b =
0.5366543, c = −0.7553879, d = 1.65469. K = 0.8975; Kmod = 0.9872; K3ST = 0.8164;
λ = 0.0911.
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Figure 8: Plot of (a) phase portrait, (b) p-q diagram for the modified 0-1 test, (c) p-q
diagram for the 0-1 test, (d) mean square displacement for the modified 0-1 test and
(e) mean square displacement for the 0-1 test. The parameter values are: a = 1.7843,
b = 0.8574, c = −0.975840, d = 0.65469. K = −0.0011; Kmod = 0.0092; K3ST = 0;
λ = 0.
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Figure 9: Plot of (a) phase portrait, (b) p-q diagram for the modified 0-1 test, (c) p-q
diagram for the 0-1 test, (d) mean square displacement for the modified 0-1 test and (e)
mean square displacement for the 0-1 test. The parameter values are: a = 1.273574,
b = 2.8574, c = −0.175345, d = 0.55469. K = 0.9972; Kmod = 0.9962; K3ST = 0.8241;
λ = 0.0770.
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Figure 10: Plot of (a) phase portrait, (b) p-q diagram for the modified 0-1 test, (c) p-q
diagram for the 0-1 test, (d) mean square displacement for the modified 0-1 test and
(e) mean square displacement for the 0-1 test. The parameter values are: a = 0.76453,
b = 1.66571, c = 1.28857, d = 0. K = 0.00042; Kmod = −0.00058; K3ST = 0; λ = 0.
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sequence of length N = 2000 for the 3ST algorithm and N = 10000 for the 0-1 and the
modified 0-1 tests.

The results show that for the cases of Fig. 1, Fig. 3, Fig. 4 and Fig. 6, the phase
portrait plot seems to be chaotic (Fig. 1(a), Fig. 3(a), Fig. 4(a), Fig. 6(a)). This chaotic
nature is confirmed by the Brownian motion of the p-q diagrams (Fig. 1(b),(c); Fig.
3(b),(c); Fig. 4(b),(c); Fig. 6(b),(c)), the linear growth of the MSD (Fig. 1(d),(e); Fig.
3(d),(e); Fig. 4(d),(e); Fig. 6(d),(e)), the parameters values Kmod and K0−1 which are
approximately 1 for the modified 0-1 test and the 0-1 test as presented on these Figures.
Besides, the parameters values K3ST and λ3ST by 3ST are greater than 0.

For the cases of Fig. 5, Fig. 8 and Fig. 10, the phase plot appears to be regular (Fig.
5(a), Fig. 8(a), Fig. 10(a)). This regular nature is confirmed by the torus motion of the
p-q diagrams (Fig. 5(b),(c); Fig. 8(b),(c); Fig. 10(b),(c)), the bounded behavior of the
MSD (Fig. 5(d),(e); Fig. 8(d),(e); Fig. 10(d),(e)), the parameters values Kmod and K0−1
that are close to 0 for the modified 0-1 test and 0-1 test. Also, the parameters values
K3ST and λ3ST by 3ST are equal to 0.

In regard to the Fig. 7 and Fig. 9, the phase portrait plot does not appears to
be chaotic while the modified 0-1 test, the 0-1 test and the 3ST detect chaos for these
parameters. So for these cases, the phase portrait fails to detect chaos. We can explain
by the fact that it is based on the visual perception which can be wrong; also, the chaos
presented by the map for these parameters may be weak.

For the case of Fig. 2, the phase portrait plot seems to be regular; this regular nature
is also detected by the modified 0-1 and 0-1 tests. However both tests indicate the periodic
motion. The 3ST being less sensitive to the sequence of input times series generated by
the system, the value of the periodicity index is λ3ST = −0.0617, which may be interpreted
as quasi-periodic motion. This test is a very efficient method and is particularly useful in
characterizing the quasi-periodic motion.

To better characterize the behavior of the Peter-De-Jong map when a control param-
eter varies with the time, its global dynamics is valued using the modified 0-1 and 3ST
tests for parameter value a varying from −5 to 5, with b = −0.78980076, c = −0.5964787
and d = −1.7829015. The results are compared with those of the 0-1 test and the bifur-
cation diagram as displayed in Fig. 11 below. As shown in Fig. 11, the results of the
modified 0-1 and 3ST tests are in good agreement with those of the bifurcation diagram
and the 0-1 test for most part of points in the range of variation of the control parameter.
Nevertheless in some short ranges at a ≈ [−4,−3.8] and a ≈ [1, 1.2], the dynamics seem
to be litigious. It is difficult to take a decision regarding the dynamics of the system
by only visualizing the bifurcation diagram (Fig. 11(a)). The dynamics there might be
quasi-periodic or weakly chaotic. In these small ranges the 0-1 test detects a regular
dynamics (Fig. 11(b)) while the modified behaves as a weak chaos (Fig. 11(c)). The 3ST
detects quasi-periodicity in some points of these ranges (Fig. 11(e)).
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Figure 11: Global dynamics of the Peter-De-Jong map for control parameter a varying
from -5 to 5: (a) bifurcation diagram, (b) asymptotic growth rate K0−1 by 0-1 test, (c)
asymptotic growth rate Kmod by modified 0-1 test, (d) asymptotic growth rate K3ST by
3ST test and (e) periodicity index λ3ST by 3ST test.
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5 Speeds analysis

For an efficient using of chaos detection methods for applications in areas of science, we
must be able to process the data in real time. For this purpose, we propose to compare
the processing speeds of the above studied tests for chaos detection. All the operations
are implemented using Matlab 7.9.0 (R2009b) on a personal computer equipped with an
Intel(R) Core(TM) i3-M370, 2.40 GHz CPU, running Windows 7.

In regard to the cases 1 to 10 (Fig. 1 to Fig. 10), the average simulation time for
each case is around 35s for the modified 0-1 test; 84s for the 0-1 test and 0.1s for the
3ST test. We notice that the computation time of the modified 0-1 test is 2.4 times lower
than the one of the 0-1 test and 350 times greater than the one of the 3ST test. So the
simulation time of the 3ST test is quite inconsiderable compared to those of others tests.
The simulation time of the modified 0-1 test is significantly reduced since the number of
data to be processed is reduced. For example, if the time series to analyze is a sinusoid,
we just process its maximum and minimum instead to process all points of the sinusoid.
Nevertheless, despite of fact that the computation time of the modified 0-1 test compared
to ordinary 0-1 test is considerably reduced, this time remains again heavy.

For the simulation time of global dynamics of the Peter-De-Jong map, we obtained
8064s approximately 2.24 hours for the modified 0-1 test and 11139s approximately 3.0942
hours for the 0-1 test. Although this time is reduced for the modified 0-1 test, it still
remains quite large compared to the one of 3ST test that has been assessed to around
21s. Thus the 3ST test is expected to process experimental data in real time.

6 Conclusion

Chaos detection in dynamical systems is a nontrivial problem. In order to generalize
a method, it is important to prove its reliability. In this paper, a detailed study of the
behavior of Peter-De-Jong map using two chaos detection methods namely the modified 0-
1 and 3ST tests was performed. Regarding the modified 0-1 test, it consists to process only
the local maxima and minima of time series data rather than treat the entire observable
like the ordinary 0-1 test. The 3ST test is based on pattern analysis of time series data.
These two tests for chaos do not require the knowledge of the mathematical equations
governing the dynamics of system to be applied as well as the nature and the dimension
of the underlying vector field. To show the effectiveness and the reliability of these tests,
we must applied them to data generated by various dynamical systems. Therefore, in
this work we have applied them to time series generated from the Peter-De-Jong map.
The results showed that the modified 0-1 and 3ST tests perform well for all cases of
parameters. These two tests for chaos have then shown their applicability to this kind
of map. The paper also shows that the 3ST test can be a better alternative to 0-1 test
and classical methods as it detects quasi-periodic motion in the map where the others
tests fail. Based on the time that has allowed us to simulate the global dynamics of the
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Peter-De-Jong map, we can say that the 3ST can be used to process experimental data
in real time. In prospect, we plane to apply the 3ST test to real world data.
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