

Annual Review of Chaos Theory, Bifurcations and Dynamical Systems Vol. 5, (2015) 1-9, www.arctbds.com.

Copyright (c) 2015 (ARCTBDS). ISSN 2253-0371. All Rights Reserved.

An Averaging Result for Fuzzy Differential Equations with a Small Parameter

Amel Bourada, Rahma Guen and Mustapha Lakrib Laboratory of Mathematics, University of Sidi Bel Abbès, Algeria e-mails: melmaths@live.fr; rah.guen@gmail.com; m.lakrib@univ-sba.dz

Abstract: For fuzzy differential equations with a small parameter we prove an averaging result on finite time intervals and under rather weak conditions.

Keywords: Fuzzy differential equations, small parameter, averaging.

Manuscript accepted Sep 01, 2015.

1 Introduction and preliminaries

Fuzzy differential equations have been studied by many authors due to many applications. Reader can refer to the books [12, 16] and the papers [1, 2, 4, 13, 17, 18, 19, 20] and the references therein.

In this work, we prove an averaging result for fuzzy differential equations with a small parameter. As in the previous works of the last author on the justification of the method of averaging for differential equations (see, for instance, references [7] to [11]), the conditions we assume here are more general than those considered in the literature (compare, for instance, with conditions in [5, 6, 15]).

The structure of the paper is as follows: In Section 2 we present our main result: Theorems 7. We state and prove some preliminary results in Subsection 2.1 and then we give the proof of Theorem 7 in Subsection 2.2. We finish this section with some definitions, notations and properties on fuzzy numbers and maps.

Denote by $Conv(\mathbb{R}^d)$ the set of all nonempty compact and convex subsets of \mathbb{R}^d equipped with the Hausdorff metric defined by

$$\rho(A,B) := \max \left(\sup_{a \in A} \inf_{b \in B} |a - b|, \sup_{b \in B} \inf_{a \in A} |a - b| \right), \quad \forall A, B \in \operatorname{Conv}(\mathbb{R}^{d}).$$

The metric space $(Conv(\mathbb{R}^d), \rho)$ is complete.

Let \mathbb{E}^d be the set of all fuzzy numbers, that is, the set of mappings $x: \mathbb{R}^d \to [0,1]$ that satisfy the following conditions:

- i) x is normal, that is, there exists $u_0 \in \mathbb{R}^d$ such that $x(u_0) = 1$;
- ii) x is fuzzy convex, that is, for any $u, v \in \mathbb{R}^d$ and $\lambda \in [0, 1]$, one has

$$x(\lambda u + (1 - \lambda)v) \ge \min\{x(u), x(v)\};$$

- iii) x is upper semicontinuous, that is, for any $u_0 \in \mathbb{R}^d$ and $\varepsilon > 0$, there exists $\delta = \delta(u_0, \varepsilon) > 0$ such that $x(u) < x(u_0) + \varepsilon$ for all $u \in \mathbb{R}^d$ that satisfy the condition $|u u_0| < \delta$;
- iv) the closure of the set $\{u \in \mathbb{R}^d : x(u) > 0\}$ is compact.

The zero element in \mathbb{E}^d is defined by $\hat{0}(u) = 1$ for u = 0 and 0 otherwise.

For $\alpha \in (0,1]$, the α -section $[x]^{\alpha}$ of a mapping $x \in \mathbb{E}^d$ is defined as the set $\{u \in \mathbb{R}^d : x(u) \geq \alpha\}$. The zero section of a mapping $x \in \mathbb{E}^d$ is defined as the closure of the set $\{u \in \mathbb{R}^d : x(u) > 0\}$.

For any $\alpha \in [0, 1]$, $[x]^{\alpha} \in \text{Conv}(\mathbb{R}^d)$.

The addition and scalar multiplication for the fuzzy numbers are defined as follows:

$$[x+y]^{\alpha} = [x]^{\alpha} + [y]^{\alpha}, \ [\lambda x]^{\alpha} = \lambda [x]^{\alpha}, \ x, y \in \mathbb{E}^d, \ \lambda \in \mathbb{R}, \ \alpha \in [0,1].$$

The set of fuzzy numbers is a convex cone under the addition and scalar multiplication. The metric in \mathbb{E}^d is defined by

$$D(x,y) = \sup_{\alpha \in [0,1]} \rho([x]^{\alpha}, [y]^{\alpha}), \ \forall x, y \in \mathbb{E}^d$$

where ρ is the Hausdorff metric and D is such that:

- i) (\mathbb{E}^d, D) is a complete metric space;
- ii) D(x+z,y+z) = D(x,y) for all $x,y,z \in \mathbb{E}^d$;
- iii) D(kx, ky) = |k|D(x, y) for all $x, y \in \mathbb{E}^d$ and $k \in \mathbb{R}$.

The following definitions and propositions are given in [3, 14]. Let I be an interval in \mathbb{R} .

Definition 1 Let $h: I \to \mathbb{E}^d$. The integral of h over I, denoted by $\int_I h(t)dt$, is defined by

$$\left[\int_{I} h(t)dt \right]^{\alpha} = \int_{I} h_{\alpha}(t)dt
= \left\{ \int_{I} \phi(t)dt \mid \phi : I \to \mathbb{R}^{d} \text{ is a measurable selection for } h_{\alpha} \right\},$$

for all $\alpha \in (0,1]$.

A strongly measurable and integrably bounded mapping $h:I\to\mathbb{E}^d$ is said to be integrable over I if $\int_I h(t)dt\in\mathbb{E}^d$.

Proposition 2 Let $h, g: I \to \mathbb{E}^d$ be integrable and $\lambda \in \mathbb{R}$. Then

$$i) \int_{I} (h(t) + g(t)) dt = \int_{I} h(t) dt + \int_{I} g(t) dt;$$

$$ii) \int_{I} \lambda h(t)dt = \lambda \int_{I} h(t)dt;$$

iii)
$$D\left(\int_I h(t)dt, \int_I g(t)dt\right) \leq \int_I D(h(t), g(t))dt.$$

Definition 3 A mapping $h: I \to \mathbb{E}^d$ is continuous at $t_0 \in I$ if, for any $\varepsilon > 0$, there exists $\delta = \delta(t_0, \varepsilon) > 0$ such that $D(h(t), h(t_0)) < \varepsilon$ whenever $|t - t_0| < \delta$, $t \in I$.

A mapping $h: I \to \mathbb{E}^d$ is continuous on I if it is continuous at every $t_0 \in I$.

Proposition 4 If $h: I \to \mathbb{E}^d$ is continuous, then it is integrable.

Definition 5 A mapping $h: I \times \mathbb{E}^d \to \mathbb{E}^d$ is continuous at $(t_0, x_0) \in I \times \mathbb{E}^d$ if, for any $\varepsilon > 0$ there exists $\delta = \delta(t_0, x_0, \varepsilon) > 0$ such that $D(h(t, x), h(t_0, x_0)) < \varepsilon$ whenever $|t - t_0| < \delta$ and $D(x, x_0) < \delta$, $t \in I$ and $x \in \mathbb{E}^d$.

A mapping $h: I \times \mathbb{E}^d \to \mathbb{E}^d$ is continuous on $I \times \mathbb{E}^d$ if it is continuous at every $(t_0, x_0) \in I \times \mathbb{E}^d$.

Let $x, y \in \mathbb{E}^d$. If there exists a $z \in \mathbb{E}^d$ such that x = y + z, then we call z the H-difference of x and y, denoted by x - y.

Definition 6 A mapping $h: I \to \mathbb{E}^d$ is differentiable at $t_0 \in I$ if there exists a $\dot{h}(t_0) \in \mathbb{E}^d$ such that the limits

$$\lim_{\Delta \to 0^+} \frac{h(t_0 + \Delta) - h(t_0)}{\Delta} \qquad and \qquad \lim_{\Delta \to 0^+} \frac{h(t_0) - h(t_0 - \Delta)}{\Delta}$$

exist and equal to $\dot{h}(t_0)$.

A mapping $h: I \to \mathbb{E}^d$ is called differentiable on I if it is differentiable at every $t_0 \in I$.

Here the limit is taken in the metric space (\mathbb{E}^d, D) . At the end points of I, we consider only the one-sided derivatives.

If $h: I \to \mathbb{E}^d$ is differentiable at $t_0 \in I$, then we say that $\dot{h}(t_0)$ is the fuzzy derivative of h at t_0 .

2 Main result

Consider the following initial value problem associated to a fuzzy differential equation with a small parameter

$$x' = f\left(\frac{t}{\varepsilon}, x\right), \ x(0) = x_0,$$
 (1)

where $f: \mathbb{R}_+ \times \mathbb{U} \to \mathbb{E}^d$, \mathbb{U} is an open subset of \mathbb{E}^d , $x_0 \in \mathbb{U}$ and $\varepsilon > 0$ is a small parameter.

We associate (1) with the averaged initial value problem

$$y' = f^{o}(y), \ y(0) = x_0,$$
 (2)

where the mapping $f^o: \mathbb{U} \to \mathbb{E}^d$ is such that, for any $x \in \mathbb{U}$

$$\lim_{T \to \infty} D\left(\frac{1}{T} \int_0^T f(\tau, x) d\tau, f^o(x)\right) = 0.$$
 (3)

Theorem 7 Suppose that the following hold:

- (H1) the mapping $f: \mathbb{R}_+ \times \mathbb{U} \to \mathbb{E}^d$ in (1) is continuous;
- (H2) there exist a locally Lebesgue integrable mapping $m: \mathbb{R}_+ \to \mathbb{R}_+$ and a constant M>0 such that

$$D(f(t,x), \hat{0}) \le m(t), \quad \forall t \in \mathbb{R}_+, \forall x \in \mathbb{U}$$

with

$$\int_{t_1}^{t_2} m(t)dt \le M(t_2 - t_1), \ \forall t_1, t_2 \in \mathbb{R}_+;$$

(H3) there exists a constant $\lambda > 0$ such that for all continuous mappings $u, v : \mathbb{R}_+ \to \mathbb{U}$ and all $t_1, t_2 \in \mathbb{R}_+$, $t_1 \leq t_2$,

$$D\left(\int_{t_1}^{t_2} f(\tau, u(\tau)) d\tau, \int_{t_1}^{t_2} f(\tau, v(\tau)) d\tau\right) \le \lambda \int_{t_1}^{t_2} D(u(\tau), v(\tau)) d\tau; \tag{4}$$

(H4) for all $x \in \mathbb{U}$, the limit (3) exists.

Let $x_0 \in \mathbb{U}$. Let x_{ε} be a solution of (1) and $I_{\varepsilon} = [0, \omega_{\varepsilon})$, $0 < \omega_{\varepsilon} \leq \infty$, its maximal positive interval of definition. Let y be the (unique) solution of (2) and $J = [0, \omega_0)$, $0 < \omega_0 \leq \infty$, its maximal positive interval of definition. Then, for any L > 0, $L \in I_{\varepsilon} \cap J$, and $\delta > 0$, there exists $\varepsilon_0 = \varepsilon_0(x_0, L, \delta) > 0$ such that, for all $\varepsilon \in (0, \varepsilon_0]$, the following condition is satisfied:

$$D(x_{\varepsilon}(t), y(t)) < \delta, \quad \forall t \in [0, L].$$

Remark 8 Using condition (H3) we will prove in Lemma 9 below that the mapping f^o : $\mathbb{U} \to \mathbb{E}^d$ in (3) is Lipschitz continuous so that the uniqueness of the solution of the averaged initial value problem (2) is guaranteed.

Notice that condition (H3) is a Lipschitz-type condition on the indefinite integral of f and not on f itself. On the other hand, the averaging results stated in [5, 6, 15] are proved under conditions that are stronger compared to the ones above. In particular, the authors assume that the mapping f is uniformly bounded and is Lipschitz continuous to respect to the second variable.

2.1 Technical lemmas

Here we prove some results we need for the proof of Theorem 7.

Lemma 9 Let $f: \mathbb{R}_+ \times \mathbb{U} \to \mathbb{E}^d$. Suppose that the mapping f satisfies conditions (H2)-(H4) in Theorem 7. Then the mapping $f^0: \mathbb{U} \to \mathbb{R}^d$ in (3) is uniformly bounded by constant M in condition (H2), that is, $D(f^o(x), \hat{0}) \leq M$, for all $x \in \mathbb{U}$, and satisfies the Lipschitz condition with constant λ as in condition (H3).

Proof. Boundedness of f^o by M. Let $x \in \mathbb{U}$. By conditions (H2) and (H4) we deduce that, for any $\eta > 0$ there exists $T_0 = T_0(x, \eta) > 0$ such that, for all $T \geq T_0$ we have

$$D(f^{o}(x), \hat{0}) \leq D\left(f^{o}(x), \frac{1}{T} \int_{0}^{T} f(\tau, x) d\tau\right) + D\left(\frac{1}{T} \int_{0}^{T} f(\tau, x) d\tau, \hat{0}\right)$$
$$\leq \eta + \frac{1}{T} \int_{0}^{T} D\left(f(\tau, x), \hat{0}\right) d\tau \leq \eta + M.$$

Since the value of η is arbitrary, in the limit we obtain the desired result.

Lipschitz condition of f^o . Let $x, x' \in \mathbb{U}$. By conditions (H3) and (H4) we can easily deduce that, for any $\eta > 0$ there exists $T_0 = T_0(x, x', \eta) > 0$ such that, for all $T \geq T_0$ we have

$$D(f^{o}(x), f^{o}(x')) \leq D\left(f^{o}(x), \frac{1}{T} \int_{0}^{T} f(\tau, x) d\tau\right)$$

$$+ \frac{1}{T} D\left(\int_{0}^{T} f(\tau, x) d\tau, \int_{0}^{T} f(\tau, x') d\tau\right)$$

$$+ D\left(f^{o}(x'), \frac{1}{T} \int_{0}^{T} f(\tau, x') d\tau\right)$$

$$\leq 2\eta + \frac{1}{T} \lambda \int_{0}^{T} D(x, x') d\tau = 2\eta + \lambda D(x, x').$$

Since the value of η is arbitrary, in the limit we obtain that

$$D(f^o(x), f^o(x')) \le \lambda D(x, x').$$

This finishes the proof.

Lemma 10 Let $f : \mathbb{R}_+ \times \mathbb{U} \to \mathbb{E}^d$. Suppose that the mapping f satisfies conditions (H1), (H2) and (H4) in Theorem 7. Then, for all $x \in \mathbb{U}$, $t \geq 0$ and $\alpha > 0$, we have

$$\lim_{\varepsilon \to 0^+} D\left(\frac{\varepsilon}{\alpha} \int_{t/\varepsilon}^{t/\varepsilon + \alpha/\varepsilon} f(\tau, x) d\tau, f^o(x)\right) = 0.$$

Proof. Let $x \in \mathbb{U}$, $t \geq 0$ and $\alpha > 0$.

Case 1: t = 0. From condition (H4), it follows immediately that

$$\lim_{\varepsilon \to 0} D\left(\frac{\varepsilon}{\alpha} \int_0^{\alpha/\varepsilon} f(\tau, x) d\tau, f^o(x)\right) = 0.$$

Case 2: $t \in (0, L]$. It is not difficult to verify that

$$D\left(\frac{\varepsilon}{\alpha} \int_{t/\varepsilon}^{t/\varepsilon + \alpha/\varepsilon} f(\tau, x) d\tau, f^{o}(x)\right)$$

$$\leq D\left(\frac{1}{t/\varepsilon + \alpha/\varepsilon} \int_{0}^{t/\varepsilon + \alpha/\varepsilon} f(\tau, x) d\tau, f^{o}(x)\right)$$

$$+ \frac{L}{\alpha} \left[D\left(\frac{1}{t/\varepsilon + \alpha/\varepsilon} \int_{0}^{t/\varepsilon + \alpha/\varepsilon} f(\tau, x) d\tau, f^{o}(x)\right)\right]$$

$$+ D\left(\frac{1}{t/\varepsilon} \int_{0}^{t/\varepsilon} f(\tau, x) d\tau, f^{o}(x)\right)\right].$$
(5)

From condition (H4), we can easily deduce that

$$\lim_{\varepsilon \to 0} D\left(\frac{1}{t/\varepsilon + \alpha/\varepsilon} \int_0^{t/\varepsilon + \alpha/\varepsilon} f(\tau, x) d\tau, f^o(x)\right) = 0$$

and

$$\lim_{\varepsilon \to 0} D\left(\frac{1}{t/\varepsilon} \int_0^{t/\varepsilon} f(\tau, x) d\tau, f^o(x)\right) = 0.$$

Therefore the right-hand side of (5) tends to zero as $\varepsilon \to 0^+$ and the result is proved. \Box The next corollary follows directly from Lemma 10.

Corollary 11 Suppose that the mapping f in (1) satisfies conditions (H1)-(H4) in Theorem 7. Let $x_0 \in \mathbb{U}$. Let y be the (unique) solution of (2) and $J = [0, \omega_0)$, $0 < \omega_0 \le \infty$, its maximal positive interval of definition. Let L > 0 such that $L \in J$. Then, for all $t \in [0, L]$ and $\alpha > 0$, we have

$$\lim_{\varepsilon \to 0} D\left(\frac{\varepsilon}{\alpha} \int_{t/\varepsilon}^{t/\varepsilon + \alpha/\varepsilon} f(\tau, y(t)) d\tau, f^{o}(y(t))\right) = 0.$$
 (6)

Lemma 12 Suppose that the mapping f in (1) satisfies conditions (H1)-(H4) in Theorem 7. Let $x_0 \in \mathbb{U}$. Let y be the (unique) solution of (2) and $J = [0, \omega_0)$, $0 < \omega_0 \leq \infty$, its maximal positive interval of definition. Then, for all L > 0 such that $L \in J$, we have

$$\lim_{\varepsilon \to 0} \sup_{t \in [0,L]} D\left(\int_0^t f\left(\frac{\tau}{\varepsilon}, y(\tau)\right) d\tau, \int_0^t f^o(y(\tau)) d\tau \right) = 0.$$

Proof. Let L > 0, $L \in J$, and $t_0 = 0 < t_1 < \cdots < t_n < \cdots < t_p = L$, $p \in \mathbb{N}$, a partition of [0, L] with $\alpha = \alpha(\varepsilon) := t_{n+1} - t_n$, $n = 1, \ldots, p$ and $\lim_{\varepsilon \to 0} \alpha = 0$. Let $t \in [t_m, t_{m+1}]$ for any $m \in \{0, \cdots, p-1\}$. Then

$$D\left(\int_{0}^{t} f\left(\frac{\tau}{\varepsilon}, y(\tau)\right) d\tau, \int_{0}^{t} f^{o}(y(\tau)) d\tau\right)$$

$$\leq \sum_{n=0}^{m-1} D\left(\int_{t_{n}}^{t_{n+1}} f\left(\frac{\tau}{\varepsilon}, y(\tau)\right) d\tau, \int_{t_{n}}^{t_{n+1}} f^{o}(y(\tau)) d\tau\right)$$

$$+D\left(\int_{t_{m}}^{t} f\left(\frac{\tau}{\varepsilon}, y(\tau)\right) d\tau, \int_{t_{m}}^{t} f^{o}(y(\tau)) d\tau\right).$$

$$(7)$$

By condition (H2) and Lemma 9 we have

$$D\left(\int_{t_{m}}^{t} f\left(\frac{\tau}{\varepsilon}, y(\tau)\right) d\tau, \int_{t_{m}}^{t} f^{o}(y(\tau)) d\tau\right)$$

$$\leq D\left(\int_{t_{m}}^{t} f\left(\frac{\tau}{\varepsilon}, y(\tau)\right) d\tau, \hat{0}\right) + D\left(\int_{t_{m}}^{t} f^{o}(y(\tau)) d\tau, \hat{0}\right)$$

$$\leq \int_{t_{m}}^{t} D\left(f\left(\frac{\tau}{\varepsilon}, y(\tau)\right), \hat{0}\right) d\tau + \int_{t_{m}}^{t} D\left(f^{o}(y(\tau)), \hat{0}\right) d\tau \leq 2M\alpha.$$

Now, for each n = 0, ..., m - 1 and $\tau \in [t_n, t_{n+1}]$, by Lemma 10 (boundedness of f^o par constant M) we can easily deduce that $D(y(\tau), y(t_n)) \leq M\alpha$ so that by condition (H3) and Lemma 10 (Lipschitz condition of f^o), it follows, respectively, that

$$D\left(\int_{t_n}^{t_{n+1}} f\left(\frac{\tau}{\varepsilon}, y(\tau)\right) d\tau, \int_{t_n}^{t_{n+1}} f\left(\frac{\tau}{\varepsilon}, y(t_n)\right) d\tau\right)$$

$$\leq \lambda \int_{t_n}^{t_{n+1}} D(y(\tau), y(t_n)) d\tau \leq \lambda M\alpha^2$$

and

$$D\left(\int_{t_n}^{t_{n+1}} f^o(y(\tau)) d\tau, \int_{t_n}^{t_{n+1}} f^o(y(t_n)) d\tau\right)$$

$$\leq \int_{t_n}^{t_{n+1}} D\left(f^o(y(\tau)), f^o(y(t_n))\right) d\tau$$

$$\leq \lambda \int_{t_n}^{t_{n+1}} D(y(\tau), y(t_n)) d\tau \leq \lambda M\alpha^2.$$

Hence, from (7), it follows that

$$D\left(\int_{0}^{t} f\left(\frac{\tau}{\varepsilon}, y(\tau)\right) d\tau, \int_{0}^{t} f^{o}(y(\tau)) d\tau\right)$$

$$\leq \sum_{n=0}^{m-1} D\left(\int_{t_{n}}^{t_{n+1}} f\left(\frac{\tau}{\varepsilon}, y(t_{n})\right) d\tau, \int_{t_{n}}^{t_{n+1}} f^{o}(y(t_{n})) d\tau\right)$$

$$+ \sum_{n=0}^{m-1} 2\lambda M\alpha^{2} + 2M\alpha.$$
(8)

For each $n = 0, \ldots, m - 1$, we have

$$\begin{split} \beta_n &:= D\left(\int_{t_n}^{t_{n+1}} f\left(\frac{\tau}{\varepsilon}, y(t_n)\right) d\tau, \int_{t_n}^{t_{n+1}} f^o(y(t_n)) d\tau\right) \\ &= \alpha D\left(\frac{\varepsilon}{\alpha} \int_{t_n/\varepsilon}^{t_n/\varepsilon + \alpha/\varepsilon} f\left(\tau, y(t_n)\right) d\tau, f^o(y(t_n))\right) := \alpha \varrho_n \leq \alpha \varrho_m \end{split}$$

where $\varrho_m = \max\{\varrho_n = \varrho_n(\varepsilon) : n = 0, \dots, m-1\}$ and, by Corollary 11, $\lim_{\varepsilon \to 0} \varrho_n = 0$.

Then

$$\sum_{n=0}^{m-1} \beta_n \le \varrho_m \sum_{n=0}^{m-1} \alpha = \varrho_m \sum_{n=0}^{m-1} (t_{n+1} - t_n) = \varrho_m t \le \varrho_m L \le \varrho L,$$

where $\varrho = \varrho(\varepsilon) = \max\{\varrho_m : m = 0, \dots, p - 1\}$ and $\lim_{\varepsilon \to 0} \varrho = 0$.

On the other hand, we have

$$\sum_{n=0}^{m-1} 2\lambda M\alpha^2 = 2\lambda M\alpha \sum_{n=0}^{m-1} \alpha \le 2\lambda M\alpha t \le 2\lambda M\alpha L.$$

Finally, from (8) we obtain

$$\sup_{t \in [0,L]} D\left(\int_0^t f\left(\frac{\tau}{\varepsilon}, y(\tau)\right) d\tau, \int_0^t f^o(y(\tau)) d\tau\right) \le 2M(\lambda L + 1)\alpha. \tag{9}$$

As the right-hand side of (9) tends to zero as $\varepsilon \to 0^+$, the lemma is proved.

2.2 Proof of Theorem 7

We assume that the conditions in Theorem 7 hold.

For $t \in [0, L] \subset I_{\varepsilon} \cap J$, using condition (H3), we obtain

$$D(y(t), x_{\varepsilon}(t)) = D\left(\int_{0}^{t} f^{o}(y(\tau))d\tau, \int_{0}^{t} f\left(\frac{\tau}{\varepsilon}, x_{\varepsilon}(\tau)\right)d\tau\right)$$

$$\leq D\left(\int_{0}^{t} f^{o}(y(\tau))d\tau, \int_{0}^{t} f\left(\frac{\tau}{\varepsilon}, y(\tau)\right)d\tau\right)$$

$$+D\left(\int_{0}^{t} f\left(\frac{\tau}{\varepsilon}, y(\tau)\right)d\tau, \int_{0}^{t} f\left(\frac{\tau}{\varepsilon}, x_{\varepsilon}(\tau)\right)d\tau\right)$$

$$\leq \sigma + \lambda \int_{0}^{t} D\left(y(\tau), x_{\varepsilon}(\tau)\right)d\tau$$

$$(10)$$

where

$$\sigma = \sigma(\varepsilon) := \sup_{t \in [0,L]} D\left(\int_0^t f^o(y(\tau)) d\tau, \int_0^t f\left(\frac{\tau}{\varepsilon}, y(\tau)\right) d\tau \right).$$

By Lemma 12, we have $\lim_{\varepsilon \to 0} \sigma = 0$.

By Gronwall-Bellman's Lemma, from (10) it follows that

$$D(y(t), x_{\varepsilon}(t)) \le \sigma e^{\lambda t} \le \sigma e^{\lambda L}$$

from which we deduce that

$$\lim_{\varepsilon \to 0} \sup_{t \in [0,L]} D(x_{\varepsilon}(t), y(t)) = 0.$$

The proof is complete.

References

- [1] B. Bede, S.G. Gal, Generalizations of the differentiability of fuzzy-number-valued mappings with applications to fuzzy differential equations, *Fuzzy Sets and Systems*, **151** (2005), 581-599.
- [2] Y. Chalco-Cano, H. Román-Flores, On new solutions of fuzzy differential equations, *Chaos, Solitons and Fractals*, **38** (2008), 112-119.
- [3] O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems, 24 (1987), No.3, 301-317.
- [4] O. Kaleva, A note on fuzzy differential equations, Nonlinear Analysis: Theory, Methods & Applications, 64 (2006), 895-900.
- [5] O.D. Kichmarenko, N.V. Skripnik, Averaging of fuzzy differential equations with delay, *Nonlinear Oscillations*, **11** (2008), No.3, 331-344.
- [6] O.D. Kichmarenko, N.V. Skripnik, One Scheme of Averaging of Fuzzy Differential Equations with Maxima, *J. Adv. Resear. Appl. Math.* **3** (2011), Issue 1, 94-103.
- [7] M. Lakrib, The method of averaging and functional differential equations with delay, *Int. J. Math. Math. Sci.*, **26** (2001), No.8, 497-511.
- [8] M. Lakrib, On the averaging method for differential equations with delay, *Electron*. J. Diff. Eqns. **2002** (2002), No.65, 1-16.
- [9] M. Lakrib, An averaging theorem for ordinary differential inclusions, *Bull. Belg. Math. Soc. Simon Stevin*, 16 (2009), No.1, 13-29.
- [10] M. Lakrib, T. Sari, Averaging results for functional differential equations, Sibirsk. Mat. Zh. 45 (2004), No.2, 375-386; translation in Siberian Math. J., 45 (2004), No.2, 311-320.
- [11] M. Lakrib, T. Sari, Time averaging for ordinary differential equations and retarded functional differential equations, *Electron. J. Diff. Eqns.*, **2010** (2010), No.40, 1-24.
- [12] V. Lakshmikantham, R.N. Mohapatra, Theory of fuzzy differential equations and inclusions, Taylor and Francis, London, 2003.

- [13] J.J. Nieto, R. Rodríguez-López, D.N. Georgiou, Fuzzy differential systems under generalized metric spaces approach, *Dynam. Syst. Appl.*, **17** (2008), 1-24.
- [14] J.Y. Park, H.K. Han, Existence and uniqueness theorem for a solution of fuzzy differential equations, *Int. J. Math. Math. Sci.*, **22** (1999), No.2, 271-279.
- [15] A.V. Plotnikov, T.A. Komleva, Averaging of the Fuzzy Differential Equations, *J. Uncertain Syst.*, **6** (2012), No.1, 30-37.
- [16] A.V. Plotnikov, N. Skripnik, Differential Equations with Clear and Fuzzy Right-Hand side. Asymptotic Methods, Astroprint, Odessa 2009 (in Russian).
- [17] S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems, 24 (1987), 319-330.
- [18] S.J. Song, C.X. Wu, Existence and uniqueness of solutions to Cauchy problem of fuzzy differential equations, *Fuzzy Sets and Systems*, **110** (2000), 55-67.
- [19] D. Vorobiev, S. Seikkala, Towards the theory of fuzzy differential equations, *Fuzzy Sets and Systems*, **125** (2002), 231-237.
- [20] C. Wu, S. Song, Existence theorem to the Cauchy problem of fuzzy differential equations under compactness-type conditions, *Information Sciences* **108** (1998), 123-134.