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1 Introduction and preliminaries

Fuzzy differential equations have been studied by many authors due to many applications.
Reader can refer to the books [12, 16] and the papers [1, 2, 4, 13, 17, 18, 19, 20] and the
references therein.

In this work, we prove an averaging result for fuzzy differential equations with a small
parameter. As in the previous works of the last author on the justification of the method
of averaging for different differential equations (see, for instance, references [7] to [11]),
the conditions we assume here are more general than those considered in the literature
(compare, for instance, with conditions in [5, 6, 15]).

The structure of the paper is as follows: In Section 2 we present our main result:
Theorems 7. We state and prove some preliminary results in Subsection 2.1 and then we
give the proof of Theorem 7 in Subsection 2.2. We finish this section with some definitions,
notations and properties on fuzzy numbers and maps.

Denote by Conv(RY) the set of all nonempty compact and convex subsets of R?
equipped with the Hausdorff metric defined by

p(A, B) := max (sup inf |a — b|, sup inf |a — b|) , VA, B € Conv(RY).
acA bEB peB a€A
The metric space (Conv(RY), p) is complete.
Let E¢ be the set of all fuzzy numbers, that is, the set of mappings = : RY — [0, 1]
that satisfy the following conditions:
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i) x is normal, that is, there exists ug € R? such that z(ug) = 1;
ii) z is fuzzy convex, that is, for any u,v € R? and A € [0, 1], one has
r(Au+ (1= A)v) > min{z(u),z(v)};
iii) 2 is upper semicontinuous, that is, for any uy € R? and ¢ > 0, there exists § =

§(up,€) > 0 such that z(u) < x(ug) + ¢ for all u € R? that satisfy the condition
|u — up| < 6;

iv) the closure of the set {u € R?: z(u) > 0} is compact.

The zero element in E¢ is defined by 0(u) = 1 for u = 0 and 0 otherwise.

For a € (0,1], the a-section [z]* of a mapping = € E? is defined as the set {u € R? :
x(u) > a}. The zero section of a mapping z € E? is defined as the closure of the set
{ueR: z(u) > 0}.

For any « € [0,1], [z]* € Conv(RY).

The addition and scalar multiplication for the fuzzy numbers are defined as follows:

[z 4 9% = [2]* + [y]%, [D2]® = A2]%, 2,y €EY AN eR, ac0,1].

The set of fuzzy numbers is a convex cone under the addition and scalar multiplication.
The metric in E? is defined by

D(z,y) = s p([2]*, [y]*), Vz,y € E?
ag|0,

where p is the Hausdorff metric and D is such that:
i) (E¢, D) is a complete metric space;
i) D(z+ z,y+ 2) = D(x,y) for all x,y,2 € EY
iii) D(kx,ky) = |k|D(z,y) for all z,y € E? and k € R.

The following definitions and propositions are given in [3, 14]. Let I be an interval
in R.

Definition 1 Let h : I — E%. The integral of h over I, denoted by [, h(t)dt, is defined

by
[ /1 h(t)dt] o /I ho(t)dt

= {/gb(t)dt | ¢ : I — R is a measurable selection for ha} ,
I

for all o € (0, 1].

A strongly measurable and integrably bounded mapping h : I — E? is said to be
integrable over I if [, h(t)dt € E*.
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Proposition 2 Let h,g: I — E? be integrable and A € R. Then

i) /I(h(t)+g(t))dt:/h(t)dt+/g(t)dt,-

1 1

i) /I Ah(t)dt = A /I h(t)dt;

iii) D ( /I h(t)dt, /I g(t)dt) < /I D(h(t), g(#))dt.

Definition 3 A mapping h : I — E? is continuous at ty € I if, for any € > 0, there
exists 0 = 0(tg, ) > 0 such that D(h(t), h(to)) < € whenever [t —ty| <9I, t € .
A mapping h : I — E? is continuous on I if it is continuous at every ty € I.

Proposition 4 If h: I — E? is continuous, then it is integrable.

Definition 5 A mapping h : I x EY — E¢ is continuous at (to,zo) € I x E? if, for
any € > 0 there exists § = §(to, xg,€) > 0 such that D(h(t,x), h(to, x0)) < € whenever
It —to] <0 and D(x,xz0) <6, t €1 and x € E%.

A mapping h : I x E* — E? is continuous on I x E? if it is continuous at every
(to,l’o) el x Ed.

Let z,y € E¢ If there exists a z € E? such that z = y + 2z, then we call z the
H-difference of x and y, denoted by = — y.

Definition 6 A mapping h : I — E? is differentiable at ty € I if there exists a h(to) e E4
such that the limits

po Bl &) —h(to) L hlt) — bt — A)
A—0+ A A—0t A

exist and equal to h(ty).
A mapping h : I — E? is called differentiable on I if it is differentiable at every ty € I.

Here the limit is taken in the metric space (E¢, D). At the end points of I, we consider
only the one-sided derivatives. '

If h: I — E4is differentiable at t, € I, then we say that h(ty) is the fuzzy derivative
of h at t.

2 Main result

Consider the following initial value problem associated to a fuzzy differential equation
with a small parameter

o= f (éx) . 2(0) = a0, (1)

where f: R, xU — E? U is an open subset of E?, 2, € U and € > 0 is a small parameter.
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We associate (1) with the averaged initial value problem

y' = f°(y), y(0) = o, (2)

where the mapping f°: U — E? is such that, for any z € U

lim D (% /0 " b2y, fo(x)) 0. (3)

T—o00

Theorem 7 Suppose that the following hold:
(H1) the mapping f : Ry x U — E? in (1) is continuous;

(H2) there exist a locally Lebesgue integrable mapping m : Ry — R, and a constant
M > 0 such that

D(f(t,x),0) <m(t), VteRy,VzreU
with ,
/ m(t)dt < M(ty —t1), Vi, ty € Ry;

t1

(H3) there exists a constant X\ > 0 such that for all continuous mappings u,v : Ry — U
and all tl,tg S R+, tl S tg,

D < /: F(ru(r))dr, /t ; f(T,v(T))dT) <) /t D) o) ()

1
(H4) for all x € U, the limit (3) exists.

Let xq € U. Let x. be a solution of (1) and I. = [0,w,), 0 < w. < oo, its mazimal
positive interval of definition. Let y be the (unique) solution of (2) and J = [0,wp),
0 < wy < 00, its mazimal positive interval of definition. Then, for any L >0, L € I.NJ,
and 6 > 0, there exists eg = €o(xo, L, ) > 0 such that, for all ¢ € (0,e], the following
condition s satisfied:

D(z.(t),y(t)) <o, Vte|0,L].

Remark 8 Using condition (H3) we will prove in Lemma 9 below that the mapping f°
U — E4 in (3) is Lipschitz continuous so that the uniqueness of the solution of the averaged
initial value problem (2) is guaranteed.

Notice that condition (H3) is a Lipschitz-type condition on the indefinite integral of
f and not on f itself. On the other hand, the averaging results stated in [5, 6, 15] are
proved under conditions that are stronger compared to the ones above. In particular, the
authors assume that the mapping f is uniformly bounded and is Lipschitz continuous to
respect to the second variable.



Averaging for Fuzzy Differential Equations )

2.1 Technical lemmas
Here we prove some results we need for the proof of Theorem 7.

Lemma 9 Let f : R, x U — E Suppose that the mapping f satisfies conditions (H2)-
(H4) in Theorem 7. Then the mapping f° : U — R in (3) is uniformly bounded by

A~

constant M in condition (H2), that is, D(f°(x),0) < M, for all x € U, and satisfies the
Lipschitz condition with constant X as in condition (H3).

Proof. Boundedness of f° by M. Let € U. By conditions (H2) and (H4) we deduce
that, for any 1 > 0 there exists Ty = Ty(z,n) > 0 such that, for all "> T we have

D(f(x),0) <D (f"(x), % /OT £, x)dT) 4D (% /OT f(r2)dr, 6)

T
Sn—l—%/ D(f(T,:.E),O)dTSﬁ—I—M.
0

Since the value of 7 is arbitrary, in the limit we obtain the desired result.
Lipschitz condition of f°. Let x,2’ € U. By conditions (H3) and (H4) we can easily

deduce that, for any n > 0 there exists Ty = To(x,2’,n7) > 0 such that, for all T > T, we
have

D(f*(x), f*(a')) < D (f°<x>, + ", x)df)

1 T T
+=D / f(r, x)dT,/ f(r,2")dr
T 0 0
1 [T
+0 (1) [ stryir)
T Jo
1 T
<2n+ T)\/ D(z,2")dr = 2n+ AD(z, 2').
0
Since the value of 7 is arbitrary, in the limit we obtain that
D(f°(x), f(2")) < AD(x, ).

This finishes the proof. ]

Lemma 10 Let f: R, x U — E?. Suppose that the mapping f satisfies conditions (H1),
(H2) and (H4) in Theorem 7. Then, for allx € U, t > 0 and a > 0, we have

lim D (5 / t/ewef(r, x)dr, f“(x)) ~0.

e—0t [0 t/e
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Proof. Let x € U, t > 0 and a > 0.
Case 1: t = 0. From condition (H4), it follows immediately that

ale
li_r)r(l)D (2/0 f(r,z)dr, fo(x)> =0.

Case 2: t € (0, L]. It is not difficult to verify that

e t/eta/e

D (- / (7 2)dr, f"(:c))

& Ji/e

1 t/e+afe .
<D (m/o f(r,x)dr, f (:x))
1 t/etafe )
D(a;EEA f@@MJ@O

1 t/e )
+D (t/—»S/O f(r,x)dr, f (:)3))] .

From condition (H4), we can easily deduce that

t/e+afe
lim D <¥ / e oy, fo(:c)> ~0
0

_|__

e>0 t/e +afe

and

' 1 t/e ,
ll_)I%D <t/—€/0 f(r,z)dr, f (SL’)) = 0.

Therefore the right-hand side of (5) tends to zero as € — 07 and the result is proved. [

The next corollary follows directly from Lemma 10.

Corollary 11 Suppose that the mapping f in (1) satisfies conditions (H1)-(H4) in The-
orem 7. Let xg € U. Let y be the (unique) solution of (2) and J = [0,wp), 0 < wy < 00,
its maximal positive interval of definition. Let L > 0 such that L € J. Then, for all
t €10,L] and o > 0, we have

e t/eta/e
1mD<;/ fhmmmﬁw@OZO (6)

e—0 o t/e
Lemma 12 Suppose that the mapping f in (1) satisfies conditions (H1)-(H4) in Theorem

7. Let xy € U. Let y be the (unique) solution of (2) and J = [0,wp), 0 < wy < 00, its
mazimal positive interval of definition. Then, for all L > 0 such that L € J, we have

lgr%tsgg]D (/Otf (;y(f)> dr, /Ot f"(y(T))dT) =0.



Averaging for Fuzzy Differential Equations 7

Proof. Let L >0, L€ J,andty=0<t; <---<t, <---<t,=L,pecN, apartition
of [0, L] with a = a(e) :=tp41 —tn, n=1,...,pand lir%a = 0. Let t € [ty, tymy1] for any
e—

m € {0,---,p—1}. Then

D(/ g 7) dT/fo )
<So(f f”“f(g vo)ar [ f”(y(f))dT) )

+D< . dT/ oy )

By condition (H2) and Lemma 9 we have

o([ r(Zwm)in [ ruonr)
gD(/t:LfC ())dTO)+D</f dTO)
< /t; D (f (g,y(T)) ,0) dr + /tm D (fo(y(T)),O) dr < 2Ma.

Now, for each n =0,...,m — 1 and 7 € [t,, t,41], by Lemma 10 (boundedness of f° par
constant M) we can easily deduce that D(y(7),y(t,)) < Ma so that by condition (H3)
and Lemma 10 (Lipschitz condition of f°), it follows, respectively, that

D (/:H f (g,y(7)> dr, /tt+ f (g,y(tn)) dT)

t7L4*1
<A D(y(7),y(t,))dr < AMa?

tn

o( / Fo(y(r))dr, / (it

tn+1

< D (f(y(r)), f(y(tn))) dr

tn

and

tn+l
<\ D(y(7),y(t,))dr < AMa?.

tn
Hence, from (7), it follows that

(/ 1) dT/ otear)
( n>) o [ rur)

+ Z 2AMa? + 2M .

n=0

MS
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For each n =10,...,m — 1, we have

b =0 ([ (Cotn)ar [ rttear)

tn/etale
=aD (E/t f (7, y(tn)) dr, f°(y(tn))) = < agp

@) n/E

where g, = max{p, = o,(¢) : n=0,...,m — 1} and, by Corollary 11, lin% 0, = 0.
E—r
Then

3
3
L
3
L

571 S Om & = Omy (tn-l—l - tn) - th S QmL S QL>

3
Il
o
3
Il
o
3
Il
o

where ¢ = o(¢) = max{o, :m =0,...,p— 1} and lirr(l)g:O.
e—
On the other hand, we have

m—1 m—1
Z 2AMa? = 22Ma Z a < 22Mat < 2AMalL.
n=0 n=0

Finally, from (8) we obtain

up D (/Otf (g,y(f)) dr, /Ot fo(y(T))dT) < 2M(\L + a. 9)

As the right-hand side of (9) tends to zero as € — 0%, the lemma is proved. O

2.2 Proof of Theorem 7

We assume that the conditions in Theorem 7 hold.
For t € [0, L] C I. N J, using condition (H3), we obtain

Dlo(t) ) = 0 ([ rtuteyan, [ (Zn) ar)
<o ([ runar [ 1(Zom) i)
D (/Otf (o) dr /Otf (Z.w() dT)

< a+A/0 D (y(7),zc(7)) dr

o= o(e) ::t:%pL]D</ oy /f(?,y(f))df).

By Lemma 12, we have hII(l)O' = 0.
E—r

(10)

where
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By Gronwall-Bellman’s Lemma, from (10) it follows that

D(y(t),z.(t)) < oeM < gerr

from which we deduce that

lim sup D(z.(t),y(t)) = 0.

€=04¢00,1)
The proof is complete. O
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