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1 Introduction and preliminaries

Fuzzy differential equations have been studied by many authors due to many applications.
Reader can refer to the books [12, 16] and the papers [1, 2, 4, 13, 17, 18, 19, 20] and the
references therein.

In this work, we prove an averaging result for fuzzy differential equations with a small
parameter. As in the previous works of the last author on the justification of the method
of averaging for different differential equations (see, for instance, references [7] to [11]),
the conditions we assume here are more general than those considered in the literature
(compare, for instance, with conditions in [5, 6, 15]).

The structure of the paper is as follows: In Section 2 we present our main result:
Theorems 7. We state and prove some preliminary results in Subsection 2.1 and then we
give the proof of Theorem 7 in Subsection 2.2. We finish this section with some definitions,
notations and properties on fuzzy numbers and maps.

Denote by Conv(Rd) the set of all nonempty compact and convex subsets of R
d

equipped with the Hausdorff metric defined by

ρ(A,B) := max

(

sup
a∈A

inf
b∈B

|a− b|, sup
b∈B

inf
a∈A

|a− b|

)

, ∀A,B ∈ Conv(Rd).

The metric space (Conv(Rd), ρ) is complete.
Let E

d be the set of all fuzzy numbers, that is, the set of mappings x : Rd → [0, 1]
that satisfy the following conditions:
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i) x is normal, that is, there exists u0 ∈ R
d such that x(u0) = 1;

ii) x is fuzzy convex, that is, for any u, v ∈ R
d and λ ∈ [0, 1], one has

x (λu+ (1− λ)v) ≥ min {x(u), x(v)} ;

iii) x is upper semicontinuous, that is, for any u0 ∈ R
d and ε > 0, there exists δ =

δ(u0, ε) > 0 such that x(u) < x(u0) + ε for all u ∈ R
d that satisfy the condition

|u− u0| < δ;

iv) the closure of the set {u ∈ R
d : x(u) > 0} is compact.

The zero element in E
d is defined by 0̂(u) = 1 for u = 0 and 0 otherwise.

For α ∈ (0, 1], the α-section [x]α of a mapping x ∈ E
d is defined as the set {u ∈ R

d :
x(u) ≥ α}. The zero section of a mapping x ∈ E

d is defined as the closure of the set
{u ∈ R

d : x(u) > 0}.
For any α ∈ [0, 1], [x]α ∈ Conv(Rd).
The addition and scalar multiplication for the fuzzy numbers are defined as follows:

[x+ y]α = [x]α + [y]α, [λx]α = λ[x]α, x, y ∈ E
d, λ ∈ R, α ∈ [0, 1].

The set of fuzzy numbers is a convex cone under the addition and scalar multiplication.
The metric in E

d is defined by

D(x, y) = sup
α∈[0,1]

ρ([x]α, [y]α), ∀x, y ∈ E
d

where ρ is the Hausdorff metric and D is such that:

i) (Ed, D) is a complete metric space;

ii) D(x+ z, y + z) = D(x, y) for all x, y, z ∈ E
d;

iii) D(kx, ky) = |k|D(x, y) for all x, y ∈ E
d and k ∈ R.

The following definitions and propositions are given in [3, 14]. Let I be an interval
in R.

Definition 1 Let h : I → E
d. The integral of h over I, denoted by

∫

I
h(t)dt, is defined

by
[
∫

I

h(t)dt

]α

=

∫

I

hα(t)dt

=

{
∫

I

φ(t)dt | φ : I → R
d is a measurable selection for hα

}

,

for all α ∈ (0, 1].

A strongly measurable and integrably bounded mapping h : I → E
d is said to be

integrable over I if
∫

I
h(t)dt ∈ E

d.
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Proposition 2 Let h, g : I → E
d be integrable and λ ∈ R. Then

i)

∫

I

(

h(t) + g(t)
)

dt =

∫

I

h(t)dt+

∫

I

g(t)dt;

ii)

∫

I

λh(t)dt = λ

∫

I

h(t)dt;

iii) D

(
∫

I

h(t)dt,

∫

I

g(t)dt

)

≤

∫

I

D(h(t), g(t))dt.

Definition 3 A mapping h : I → E
d is continuous at t0 ∈ I if, for any ε > 0, there

exists δ = δ(t0, ε) > 0 such that D(h(t), h(t0)) < ε whenever |t− t0| < δ, t ∈ I.
A mapping h : I → E

d is continuous on I if it is continuous at every t0 ∈ I.

Proposition 4 If h : I → E
d is continuous, then it is integrable.

Definition 5 A mapping h : I × E
d → E

d is continuous at (t0, x0) ∈ I × E
d if, for

any ε > 0 there exists δ = δ(t0, x0, ε) > 0 such that D(h(t, x), h(t0, x0)) < ε whenever
|t− t0| < δ and D(x, x0) < δ, t ∈ I and x ∈ E

d.
A mapping h : I × E

d → E
d is continuous on I × E

d if it is continuous at every
(t0, x0) ∈ I × E

d.

Let x, y ∈ E
d. If there exists a z ∈ E

d such that x = y + z, then we call z the
H-difference of x and y, denoted by x− y.

Definition 6 A mapping h : I → E
d is differentiable at t0 ∈ I if there exists a ḣ(t0) ∈ E

d

such that the limits

lim
∆→0+

h(t0 +∆)− h(t0)

∆
and lim

∆→0+

h(t0)− h(t0 −∆)

∆

exist and equal to ḣ(t0).
A mapping h : I → E

d is called differentiable on I if it is differentiable at every t0 ∈ I.

Here the limit is taken in the metric space (Ed, D). At the end points of I, we consider
only the one-sided derivatives.

If h : I → E
d is differentiable at t0 ∈ I, then we say that ḣ(t0) is the fuzzy derivative

of h at t0.

2 Main result

Consider the following initial value problem associated to a fuzzy differential equation
with a small parameter

x′ = f

(

t

ε
, x

)

, x(0) = x0, (1)

where f : R+×U → E
d, U is an open subset of Ed, x0 ∈ U and ε > 0 is a small parameter.
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We associate (1) with the averaged initial value problem

y′ = f o(y), y(0) = x0, (2)

where the mapping f o : U → E
d is such that, for any x ∈ U

lim
T→∞

D

(

1

T

∫ T

0

f(τ, x)dτ, f o(x)

)

= 0. (3)

Theorem 7 Suppose that the following hold:

(H1) the mapping f : R+ × U → E
d in (1) is continuous;

(H2) there exist a locally Lebesgue integrable mapping m : R+ → R+ and a constant
M > 0 such that

D(f(t, x), 0̂) ≤ m(t), ∀t ∈ R+, ∀x ∈ U

with
∫ t2

t1

m(t)dt ≤ M(t2 − t1), ∀t1, t2 ∈ R+;

(H3) there exists a constant λ > 0 such that for all continuous mappings u, v : R+ → U

and all t1, t2 ∈ R+, t1 ≤ t2,

D

(
∫ t2

t1

f(τ, u(τ))dτ,

∫ t2

t1

f(τ, v(τ))dτ

)

≤ λ

∫ t2

t1

D(u(τ), v(τ))dτ ; (4)

(H4) for all x ∈ U, the limit (3) exists.

Let x0 ∈ U. Let xε be a solution of (1) and Iε = [0, ωε), 0 < ωε ≤ ∞, its maximal
positive interval of definition. Let y be the (unique) solution of (2) and J = [0, ω0),
0 < ω0 ≤ ∞, its maximal positive interval of definition. Then, for any L > 0, L ∈ Iε ∩J ,
and δ > 0, there exists ε0 = ε0(x0, L, δ) > 0 such that, for all ε ∈ (0, ε0], the following
condition is satisfied:

D(xε(t), y(t)) < δ, ∀t ∈ [0, L].

Remark 8 Using condition (H3) we will prove in Lemma 9 below that the mapping f o :
U → E

d in (3) is Lipschitz continuous so that the uniqueness of the solution of the averaged
initial value problem (2) is guaranteed.

Notice that condition (H3) is a Lipschitz-type condition on the indefinite integral of
f and not on f itself. On the other hand, the averaging results stated in [5, 6, 15] are
proved under conditions that are stronger compared to the ones above. In particular, the
authors assume that the mapping f is uniformly bounded and is Lipschitz continuous to
respect to the second variable.
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2.1 Technical lemmas

Here we prove some results we need for the proof of Theorem 7.

Lemma 9 Let f : R+ × U → E
d. Suppose that the mapping f satisfies conditions (H2)-

(H4) in Theorem 7. Then the mapping f 0 : U → R
d in (3) is uniformly bounded by

constant M in condition (H2), that is, D(f o(x), 0̂) ≤ M , for all x ∈ U, and satisfies the
Lipschitz condition with constant λ as in condition (H3).

Proof. Boundedness of f o by M . Let x ∈ U. By conditions (H2) and (H4) we deduce
that, for any η > 0 there exists T0 = T0(x, η) > 0 such that, for all T ≥ T0 we have

D(f o(x), 0̂) ≤ D

(

f o(x),
1

T

∫ T

0

f(τ, x)dτ

)

+D

(

1

T

∫ T

0

f(τ, x)dτ, 0̂

)

≤ η +
1

T

∫ T

0

D
(

f(τ, x), 0̂
)

dτ ≤ η +M.

Since the value of η is arbitrary, in the limit we obtain the desired result.

Lipschitz condition of f o. Let x, x′ ∈ U. By conditions (H3) and (H4) we can easily
deduce that, for any η > 0 there exists T0 = T0(x, x

′, η) > 0 such that, for all T ≥ T0 we
have

D(f o(x), f o(x′)) ≤ D

(

f o(x),
1

T

∫ T

0

f(τ, x)dτ

)

+
1

T
D

(
∫ T

0

f(τ, x)dτ,

∫ T

0

f(τ, x′)dτ

)

+D

(

f o(x′),
1

T

∫ T

0

f(τ, x′)dτ

)

≤ 2η +
1

T
λ

∫ T

0

D(x, x′)dτ = 2η + λD(x, x′).

Since the value of η is arbitrary, in the limit we obtain that

D(f o(x), f o(x′)) ≤ λD(x, x′).

This finishes the proof. �

Lemma 10 Let f : R+ ×U → E
d. Suppose that the mapping f satisfies conditions (H1),

(H2) and (H4) in Theorem 7. Then, for all x ∈ U, t ≥ 0 and α > 0, we have

lim
ε→0+

D

(

ε

α

∫ t/ε+α/ε

t/ε

f(τ, x)dτ, f o(x)

)

= 0.
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Proof. Let x ∈ U, t ≥ 0 and α > 0.
Case 1: t = 0. From condition (H4), it follows immediately that

lim
ε→0

D

(

ε

α

∫ α/ε

0

f(τ, x)dτ, f o(x)

)

= 0.

Case 2: t ∈ (0, L]. It is not difficult to verify that

D

(

ε

α

∫ t/ε+α/ε

t/ε

f(τ, x)dτ, f o(x)

)

≤ D

(

1

t/ε+ α/ε

∫ t/ε+α/ε

0

f(τ, x)dτ, f o(x)

)

+
L

α

[

D

(

1

t/ε+ α/ε

∫ t/ε+α/ε

0

f(τ, x)dτ, f o(x)

)

+D

(

1

t/ε

∫ t/ε

0

f(τ, x)dτ, f o(x)

)]

.

(5)

From condition (H4), we can easily deduce that

lim
ε→0

D

(

1

t/ε+ α/ε

∫ t/ε+α/ε

0

f(τ, x)dτ, f o(x)

)

= 0

and

lim
ε→0

D

(

1

t/ε

∫ t/ε

0

f(τ, x)dτ, f o(x)

)

= 0.

Therefore the right-hand side of (5) tends to zero as ε → 0+ and the result is proved. �

The next corollary follows directly from Lemma 10.

Corollary 11 Suppose that the mapping f in (1) satisfies conditions (H1)-(H4) in The-
orem 7. Let x0 ∈ U. Let y be the (unique) solution of (2) and J = [0, ω0), 0 < ω0 ≤ ∞,
its maximal positive interval of definition. Let L > 0 such that L ∈ J . Then, for all
t ∈ [0, L] and α > 0, we have

lim
ε→0

D

(

ε

α

∫ t/ε+α/ε

t/ε

f(τ, y(t))dτ, f o(y(t))

)

= 0. (6)

Lemma 12 Suppose that the mapping f in (1) satisfies conditions (H1)-(H4) in Theorem
7. Let x0 ∈ U. Let y be the (unique) solution of (2) and J = [0, ω0), 0 < ω0 ≤ ∞, its
maximal positive interval of definition. Then, for all L > 0 such that L ∈ J , we have

lim
ε→0

sup
t∈[0,L]

D

(
∫ t

0

f
(τ

ε
, y(τ)

)

dτ,

∫ t

0

f o(y(τ))dτ

)

= 0.
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Proof. Let L > 0, L ∈ J , and t0 = 0 < t1 < · · · < tn < · · · < tp = L, p ∈ N, a partition
of [0, L] with α = α(ε) := tn+1 − tn, n = 1, . . . , p and lim

ε→0
α = 0. Let t ∈ [tm, tm+1] for any

m ∈ {0, · · · , p− 1}. Then

D

(
∫ t

0

f
(τ

ε
, y(τ)

)

dτ,

∫ t

0

f o(y(τ))dτ

)

≤

m−1
∑

n=0

D

(
∫ tn+1

tn

f
(τ

ε
, y(τ)

)

dτ,

∫ tn+1

tn

f o(y(τ))dτ

)

+D

(
∫ t

tm

f
(τ

ε
, y(τ)

)

dτ,

∫ t

tm

f o(y(τ))dτ

)

.

(7)

By condition (H2) and Lemma 9 we have

D

(
∫ t

tm

f
(τ

ε
, y(τ)

)

dτ,

∫ t

tm

f o(y(τ))dτ

)

≤ D

(
∫ t

tm

f
(τ

ε
, y(τ)

)

dτ, 0̂

)

+D

(
∫ t

tm

f o(y(τ))dτ, 0̂

)

≤

∫ t

tm

D
(

f
(τ

ε
, y(τ)

)

, 0̂
)

dτ +

∫ t

tm

D
(

f o(y(τ)), 0̂
)

dτ ≤ 2Mα.

Now, for each n = 0, . . . , m− 1 and τ ∈ [tn, tn+1], by Lemma 10 (boundedness of f o par
constant M) we can easily deduce that D(y(τ), y(tn)) ≤ Mα so that by condition (H3)
and Lemma 10 (Lipschitz condition of f o), it follows, respectively, that

D

(
∫ tn+1

tn

f
(τ

ε
, y(τ)

)

dτ,

∫ tn+1

tn

f
(τ

ε
, y(tn)

)

dτ

)

≤ λ

∫ tn+1

tn

D(y(τ), y(tn))dτ ≤ λMα2

and

D

(
∫ tn+1

tn

f o(y(τ))dτ,

∫ tn+1

tn

f o(y(tn))dτ

)

≤

∫ tn+1

tn

D (f o(y(τ)), f o(y(tn))) dτ

≤ λ

∫ tn+1

tn

D(y(τ), y(tn))dτ ≤ λMα2.

Hence, from (7), it follows that

D

(
∫ t

0

f
(τ

ε
, y(τ)

)

dτ,

∫ t

0

f o(y(τ))dτ

)

≤

m−1
∑

n=0

D

(
∫ tn+1

tn

f
(τ

ε
, y(tn)

)

dτ,

∫ tn+1

tn

f o(y(tn))dτ

)

+

m−1
∑

n=0

2λMα2 + 2Mα.

(8)
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For each n = 0, . . . , m− 1, we have

βn := D

(
∫ tn+1

tn

f
(τ

ε
, y(tn)

)

dτ,

∫ tn+1

tn

f o(y(tn))dτ

)

= αD

(

ε

α

∫ tn/ε+α/ε

tn/ε

f (τ, y(tn)) dτ, f
o(y(tn))

)

:= α̺n ≤ α̺m

where ̺m = max{̺n = ̺n(ε) : n = 0, . . . , m− 1} and, by Corollary 11, lim
ε→0

̺n = 0.

Then
m−1
∑

n=0

βn ≤ ̺m

m−1
∑

n=0

α = ̺m

m−1
∑

n=0

(tn+1 − tn) = ̺mt ≤ ̺mL ≤ ̺L,

where ̺ = ̺(ε) = max{̺m : m = 0, . . . , p− 1} and lim
ε→0

̺ = 0.

On the other hand, we have

m−1
∑

n=0

2λMα2 = 2λMα

m−1
∑

n=0

α ≤ 2λMαt ≤ 2λMαL.

Finally, from (8) we obtain

sup
t∈[0,L]

D

(
∫ t

0

f
(τ

ε
, y(τ)

)

dτ,

∫ t

0

f o(y(τ))dτ

)

≤ 2M(λL+ 1)α. (9)

As the right-hand side of (9) tends to zero as ε → 0+, the lemma is proved. �

2.2 Proof of Theorem 7

We assume that the conditions in Theorem 7 hold.
For t ∈ [0, L] ⊂ Iε ∩ J , using condition (H3), we obtain

D(y(t), xε(t)) = D

(
∫ t

0

f o(y(τ))dτ,

∫ t

0

f
(τ

ε
, xε(τ)

)

dτ

)

≤ D

(
∫ t

0

f o(y(τ))dτ,

∫ t

0

f
(τ

ε
, y(τ)

)

dτ

)

+D

(
∫ t

0

f
(τ

ε
, y(τ)

)

dτ,

∫ t

0

f
(τ

ε
, xε(τ)

)

dτ

)

≤ σ + λ

∫ t

0

D (y(τ), xε(τ)) dτ

(10)

where

σ = σ(ε) := sup
t∈[0,L]

D

(
∫ t

0

f o(y(τ))dτ,

∫ t

0

f
(τ

ε
, y(τ)

)

dτ

)

.

By Lemma 12, we have lim
ε→0

σ = 0.
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By Gronwall-Bellman’s Lemma, from (10) it follows that

D(y(t), xε(t)) ≤ σeλt ≤ σeλL

from which we deduce that

lim
ε→0

sup
t∈[0,L]

D(xε(t), y(t)) = 0.

The proof is complete. �
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