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Abstract

Many variants of existing multipoint methods have been developed. Recently,
Khratti et al. (2011) developed a unifying family of two-point fourth order methods
which contains the well-known Ostrowski method. The authors also obtained some
new methods which are variants of Ostrowski’s method. However, it is difficult to
compare the methods with the same of the order of convergence. The dynamic
behaviour of the methods can be used as a tool for comparison.
In this work, we study the dynamic of six members of the unifying family for
some quadratic and cubic polynomials. By means of computer generated plots,
we draw their polynomiographs for the polynomials f(z) = z2−1 and f(z) = z3−1
and explain their respective dynamic behaviour by analyzing the free critical and
additional fixed points. Our results show that the methods exhibit different fractal
behaviour and the most efficient method based on the size of its basins of attractions
was found to the well-known Ostrowski method. This shows that these fourth order
variants of Ostrowski’s method are inefficient.
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1 Introduction

Iterative methods are used to find approximate solutions of nonlinear equations, f(z) = 0
which arise from various problems in mathematical and engineering sciences.

The Newton-Raphson method (2ndNR) is one of the best known and probably the
most used method for solving such nonlinear equations and is given by

zk+1 = ψ2ndNR(zk), (1)

where

ψ2ndNR(zk) = zk − u(zk)

and

u(zk) =
f(zk)

f ′(zk)
.

Several higher order variants of the Newton’s method free from second derivatives have
been proposed in the literature (see [2] and the references therein). Khratti et al. [7]
developed a unifying family of multipoint optimal fourth order methods (4thUF ) which
is given by:

zk+1 = ψ4thUF (zk), (2)

where

ψ4thUF (zk) = zk − u(zk)
(
1 + v(zk) + 2v(zk)

2 + αv(zk)
3F(v(zk))

)
,

v(zk) =
f(ψ2ndNR(zk))

f(zk)

and

F(v(zk)) =
∞∑

j=0

aj v(zk)
j ,

aj ∈ R is a converging power series. This family is termed as two-point methods because
its member requires the evaluations of the function at two different points. Khratti et al.
[7] proved that the methods are fourth order convergent in the real plane. Their result
extends to the complex plane in the following theorem:

Theorem 1. [7] Let the function f : D ⊂ C 7→ C has a simple root z∗∈D in the open
interval D. Furthermore the first, second and the third derivatives of the function f(z)
belongs in the open interval D. Then the methods of the iterative family (2) are at least
fourth order convergent for any choice of the real parameter α and the real power series
F . The methods of the family (2) satisfies the error equation

ek+1 = −c2 ((−5 + α a0) c2
2 + c3c1) ek

4

c13
+O

(
ek

5
)
, (3)

where the error after k iterations ek = zk − z∗, the constants ck = f (j)(z∗)/j! with j ≥ 1
and a0 is the coefficient of the power series.
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Table 1: Some members of the 4thUF family for different selections of α and F(v(z)).

Method α F(v(z)) ψ(z)

4thOst [10] 1 4 + 18v(z) + 16v(z)2 + ... z − u(z)

(
1 − v(z)

1 − 2v(z)
)

)

4thAmit[9] 1 1 + v(z) + v(z)2 + ... z − u(z)

(
v(z)2 +

1

1 − v(z)

)

4thKLW [8] 2 1 + v(z) + v(z)2 + ... z − u(z)

(
1 + v(z)2

1 − v(z)

)

4thKNS1 [7] 0 - z − u(z)
(
1 + v(z) + 2v(z)2

)

4thKNS2 [7] 5 1 z − u(z)
(
1 + v(z) + 2v(z)2 + 5v(z)3

)

4thKNS3 [7] 1

∞∑

m=0

5m+1

2m
v(z)m z − u(z)

(
2 − 3v(z) − v(z)2

2 − 5v(z)

)

He also rediscovered some methods including the well-known Ostrowski method (4thOst)
and obtained new fourth order methods for different selections of α and F(v(z)). We make
a summary of the some of the methods in Table 1. The 4thKNS2 and 4thKNS3 have
the following error equation

ek+1 = −c2c3
c12

ek
4 +O

(
ek

5
)

and are fifth order methods for quadratic functions since c3 = 0. For this case we term
these methods as 5thKNS2q and 5thKNS3q methods, respectively.
It is difficult to compare these methods because they have same order of convergence.
They enjoy their higher order convergence only if the starting point is chosen close to the
root. So it is important to find the basins of attractions of the methods by studying their
dynamic behaviour in the complex plane.
In this work, we introduce the basic notations and definitions. We prove the Scaling
Theorem for the unifying family. We study the dynamic behaviour of its six members
for the polynomials, f(z) = z2 − 1 and f(z) = z3 − 1 by analyzing their free critical and
additional fixed points. Bahman Kalantari [6] coined the term ”polynomiography” to be
the art and science of visualization in the approximation of roots of polynomial using
iteration methods. We draw the polynomiographs of the methods and use them to find
the most efficient method based on the size of the basins of attractions.
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2 Basic Notations and Preliminaries

Definition 1. [6, p. 89] A fixed point of the rational function R is a point z∗ such that
R(z∗) = z∗.

Definition 2. [6, p. 90] Given a fixed point z∗ ∈ C the quantity ϕ = R′(z∗) is a
well-defined point in C and is called its multiplier. There are four different basic types of
fixed points:

z∗ :

{ super-attractive, if |ϕ| = 0
attractive, if 0 < |ϕ| < 1
repelling, if |ϕ| > 1
indifferent, if |ϕ| = 1.

An indifferent fixed point is said to be rationally different or parabolic if ϕ is a root of
unity, i.e there exists a natural number n1 such that ϕn1 = 1, otherwise, irrationally
indifferent.

Let z∗ be an attracting fixed point of R(z). Its basin of attraction is the set

B(z) = {z ∈ Ĉ : Ra(z) → z∗ as a → ∞}. (4)

Definition 3. [6, p. 123] The Julia set of a given rational function R, denoted by J (R)

is the set of points z ∈ Ĉ where Ra is not normal at the point. The complement J (R) is
called the Fatou set and is denoted by F(R).

We list the properties of the Julia set [5]:

1. JR is the closure of the repelling periodic points.

2. JR is non-empty.

3. JR is completely invariant under R; i.e. R(JR) = JR = R−1(JR).

4. JR is the boundary of the basin of attraction of each fixed point or attractive cycle.

5. If z∗ ∈ JR, then the closure of

{z|Ra(z) = z∗, for some non-negative integer a},

the backward iterates of z∗, is the whole of JR.

Remark 2. [5] Property 4 guarantees that, if there are more than two roots, JR will
be a fractal set. Property 1 guarantees that the Julia set is an unstable set. Iterates of
points close to the Julia set will move away from that set. Hence, higher order methods
are very sensitive to initial conditions when the initial point is near the Julia set. Nearby
points could converge to different roots or might not converge at all. Ideally, if you start
with a point actually on the Julia set, Property 3 implies that the iterates will also be
on the Julia set. However, in practice, because the Julia set is unstable, the iterates will
most likely be thrown off the set because of rounding errors.
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Remark 3. [4] The zeros which are not zeros of f are referred as additional (or extraneous)
fixed points. Their appearance is a striking example of the caution necessary for the
selection of starting values of these higher order iteration sequences, which generally lead
to smaller basins of attraction. These points are either attracting or repelling but, in any
case, they affect the roots’ basins of attraction. If the extra fixed points are repelling, they
belong to the Julia set, so they cannot trap an iteration sequence.

To detect the existence of attracting cycles which could interfere with the search for the
roots, we observe the orbits of the free critical points of the iteration function.

Definition 4. [4] Critical values of a function are defined as those values q ∈ C for which
f(z) = q has a multiple root. The multiple root z = z∗ is called the critical point of f .
This is equivalent to the condition f ′(z∗) = 0.

The solutions of the equation ψ′

,q(z) = 0 that are not solutions of the equation of
q(z) = 0 are called free critical points. The free critical points of a higher order method
satisfy the equation

ψ′

IF,q(z)

q(z)p−1
= 0,

where p is the order of the method

Theorem 4 (Fatou-Julia). Let ψ(z) be a rational map. If z0 is an attracting periodic
point, then the immediate basin of attraction B∗(z0) contains at least one critical point.

Remark 5. [1] As a consequence of Theorem 4, to detect the existence of an attracting
periodic point that interferes with our search of a root of the equation q(z) = 0, the orbit of
each free critical point must be computed and its set of limit point determined. If the set of
limit points of the orbit of some free critical points is not a root, that is, a super-attracting
fixed point of any iterative method ψ,q(z) under consideration, then it must be an attracting
periodic orbit.

Definition 5. [1] Let f and g be two maps in the Riemann sphere into itself. An analytic
conjugacy between f and g is an analytical diffeomorphism h from the Riemann sphere
onto itself such that h ◦ f = g ◦ h (conjugacy equation).

Conjugacy plays a central role in understanding the behaviour of classes of maps from
dynamical system point of view in the sense that it preserves fixed and periodic points
and their type as well as basin of attraction.

Theorem 6 (Scaling Theorem). [1] Let f(z) be an analytic function on the Riemann
sphere, and let T (z) = Y1z + Y2, Y1 6= 0, be an affine map. If g(z) = f ◦ T (z), then
T ◦ ψ,g ◦ T−1 = ψ,f . That is ψ,f and ψ,g are analytically conjugated by T .

Remark 7. [1] If q̃(z) = ς1q(z), where ς1 is a constant, a straightforward calculation
shows that ψ(, q̃) = ψ(, q), that is, the identity map is a conjugacy between the maps
ψ(, q) and ψ(, q̃), therefore their dynamics are equivalent. The Scaling Theorem allows us
to, modulo suitable changes of coordinates, reduce the study of the dynamics of iterations



Dynamic Behaviour of a Unified Two-Point Fourth Order Family of Iterative Methods 21

ψ(, q), to the study of specific families of iterations of simpler maps. For instance, every
quadratic polynomial q(z) = b1z

2+b2z+b3 reduces, via an affine change of coordinates, to
a polynomial belonging to the one-parameter family pc(z) = z2 − c, where c = b2

2−4b1b3.
This is nothing but an appropriate re-scaling that puts ψ(, q) inside the conjugacy class of
ψ(, pc) for some c.

Theorem 8. [3, p. 8] Suppose that q is a polynomial of degree d ≥ 2. The unit circle
S1 = {z ∈ C : |z| = 1} is completely invariant if and only if q(z) = lzd, where |l| = 1.

From Theorem 8, J (q) = S1.
We prove the Scaling Theorem for the 4thUF family in the next section.

(a) (b)

Figure 1: Polynomiographs of 4thOM and 4thAmit methods for f(z) = z2 − 1

3 Scaling Theorem for the 4thUF family

Theorem 9. 4thUF’s family satisfies the Scaling Theorem, that is,
T ◦ ψ4thUF,g ◦ T−1(z) = ψ4thUF,f(z).

Proof. It is enough to show that T ◦ ψ4thUF,g(z) = ψ4thUF,f ◦ T (z).
Since g(z) = f(T (z)), we have by induction

g(a)(z) = Y a
1 f

(a)(T (z)), for a ∈ N. (5)

We have

ug(z) =
g(z)

g′(z)

=
f(T (z))

Y1f ′(T (z))
, using eq. (5) with a = 1,

=
1

Y1
uf(T (z)). (6)
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Then,

g(ψ2ndNR,g)(z) = g

(
z − 1

Y1

uf(T (z))

)

= f

(
T

(
z − 1

Y1
uf(T (z))

))
. (7)

Now, from the definition of T (z), we have

T

(
z − 1

Y1

uf(T (z))

)
= Y1

(
z − 1

Y1

uf(T (z))

)
+ Y2

= Y1z + Y2 − uf(T (z))

= T (z) − uf(T (z)). (8)

Using eqs. (7) and (8), we have

vg(z) =
g(ψ2ndNR,g(z))

g(z)

=
f (T (z) − uf(T (z)))

f(T (z))

= vf (T (z)). (9)

Using eqs. (6) and (9), we finally obtain

T ◦ ψ4thUF,g(z)

= Y1ψ4thUF,g(z) + Y2

= Y1

[
z − ug(z)

(
1 + vg(z) + 2vg(z)

2 + αvg(z)
3

∞∑

j=0

aj vg(z)
j

)]
+ Y2

= T (z) − uf(T (z))

(
1 + vf(T (z)) + 2vf (T (z))2 + αvf(T (z))3

∞∑

j=0

aj vf(T (z))j

)

= ψ4thUF,f ◦ T (z).

4 Study of the members of the 4thUF family for the

Generic Quadratic Polynomial

In this section, we analyze the dynamic behaviour of the family for the generic quadratic
polynomial.

Proposition 10. For qc = z2 − c, where c ∈ C, the Julia set of the Ostrowski method,
J (ψ4thOst,qc

) is a straight line.
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(a) (b)

Figure 2: Polynomiographs of 4thKLW and 4thKNS1 methods for f(z) = z2 − 1

Proof. Following [4], we apply the Möbius transformation

M(z) =
z +

√
c

z −√
c
,

the inverse of which is

M
−1(z) =

√
c
z + 1

z − 1
,

so that, using a computer algebra software such as Maple, we have

Mψ4thOstM
−1(z) = z4. (10)

From Theorem 8, we have J (Mψ4thOstM
−1(z)) = S1 with interior B(0) and exterior

B(∞).

However, since

Mψ4thAmitM
−1(z) =

z8 + 5z7 + 10z6 + 9z5 + 4z4

4z4 + 9z3 + 10z2 + 5z + 1
,

Mψ4thKLW M
−1(z) =

z6 + 3z5 + 3z4

3z2 + 3z + 1
,

Mψ4thKNS1M
−1(z) =

z6 + 4z5 + 5z4

5 ∗ z2 + 4 ∗ z + 1
,

Mψ5thKNS2qM
−1(z) =

z8 + 6z7 + 14z6 + 14z5

14z3 + 14z2 + 6z + 1
,

and

Mψ5thKNS3qM
−1(z) =

2z6 + 3z5

3z + 2
,

the Julia sets of these methods are not straight lines. This implies that only the Ostrowski
method will generate an ”ideal” fractal. This will be confirmed by a numerical study in
the following section.
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4.1 Numerical Study for the Quadratic Polynomial f(z) = qc=1 =
z2 − 1.

We now draw the polynomiographs of f(z) = qc=1 = z2−1 with roots z∗1 = −1 and z∗2 = 1.
Let z0 = x + i y be the initial point. A square grid of 80000 points, composed of 400
columns and 200 rows corresponding to the pixels of a computer display would represent
a region of the complex plane [11]. We consider the square R×R = [−2, 2]× [−2, 2]. Each
grid point is used as a starting value z0 of the sequence zk+1 = ψmethod(zk) and the number
of iterations until convergence is counted for each gridpoint. We assign pale blue colour
if the iterates zk of each grid point converge to the root z∗1 = −1 and green colour if they
converge to the root z∗2 = 1 in at most 100 iterations and if |z∗j − zk| < 0.0001, j = 1, 2.
In this way, the basin of attraction B(z∗j ) for each root would be assigned a characteristic
colour. The common boundaries of these basins of attraction constitute the Julia set of
the methods. If the iterates do not satisfy the above criterion for convergence we assign
the dark blue colour. The polynomiographs are generated in MATLAB R2010a. Fig. 1
(a) shows the polynomiograph of the 4thOM method and we see that its Julia set is the
imaginary axis because the 4thOM method satisfies Theorem 8. The polynomiographs of
the other five methods can be shown in Figs. 1 (a), 2 and 3. It can be observed that their
Julia sets are not straight lines because these methods do not satisfy Theorem 8. In figs.
1 to 3, we denote ∗ as the roots, o as the free critical points and + as the additional fixed
points.

(a) (b)

Figure 3: Polynomiographs of 5thKNS2q and 5thKNS3q methods for f(z) = z2 − 1

We denote FCP o and AFP+ as the free critical point and additional fixed point
of the methods, respectively. We also denote No, N+ and ND as the number of free
critical points, number of additional fixed points and number of diverging starting points,
respectively. Table 2 shows a comparison of these numbers. It also gives the values of the
free critical and additional fixed points of the methods. All these points are repelling and
are found in the Julia set. All starting points converge for the methods considered. The
5thKNS3q method is found to be the best of the 5 methods which do not satisfy Theorem
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8 as it has no free critical points and 2 additional fixed points which lie on the imaginary
axis. Its Julia set is the least complex as shown in 3 (b). For the other methods, the
presence of the free critical and additional fixed points may interfere with the root search,
thus resulting in complex fractal shapes like petals and hearts as shown in Figs. 1 (b),
2 and 3 (a). The 4thOM method is found as the most efficient since it has the largest
basins of attractions for the quadratic polynomial.

Table 2: Comparison of number of free critical points, additional fixed points and diverging
points of the members of UF family for the quadratic polynomial f(z) = z2 − 1.

method No FCP o N+ AFP+ ND

4thOM 0 - 2 ±0.5744i 0

4thAmit 4 ±0.3175 ± 0.3175i 6 ±0.4535i, ±0.4535 ± 0.2542i 0

4thKLW 2 ±0.3780i 4 ±0.3882 ± 0.3031i 0

4thKNS1 0 - 4 ±0.4916 ± 0.2446i 0

5thKNS2q 0 - 6 ±0.5392, ±0.5183 ± 0.4017i 0

5thKNS3q 0 - 4 ±1.0248i, ±0.2239 0

5 Numerical Study for the Cubic Polynomial f(z) =

qe=1 = z3 − 1.

The dynamic of the 4thUF Family for the Generic Cubic Polynomial is rather complex.
Therefore we limit ourselves to the numerical study of the Cubic Polynomial
f(z) = qe=1 = z3 − 1. The roots are z∗1 = 1, z∗2 = −0.5000 + 0.8660i and z∗3 = −0.5000 +
0.8660i. Each grid point over the region [−2, 2]× [−2, 2] is coloured accordingly, brownish
yellow for convergence to z∗1 , blue for convergence to z∗2 and pale green for convergence to
z∗3 . We use the same conditions for convergence as in the quadratic polynomial. Using the
conjugate map S(z) = ψ

(
1
z

)
, we can verify that ψ4thUF,qe=1

(∞) = ∞ and ∞ is a repelling
fixed point of the six members of the 4thUF family since |S ′(0)| > 1.
Fig 4 (a) shows the polynomiograph of the 4thOM method. There are 6 repelling free

critical and 6 repelling additional fixed points. The free critical points are usually on
the perpendicular bisector of any two roots. Fig 4 (b) shows the polynomiograph of the
4thAmit method. There are 18 free critical and 18 additional fixed points which are all
repelling. They are located at the ends of the petals centered at the origin where we
can observe some diverging starting points. It is the presence of these repelling points
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(a) (b)

Figure 4: Polynomiographs of 4thOM and 4thAmit methods for f(z) = z3 − 1

which cause the 4thAmit iterates to diverge. Fig 5 (a) shows the polynomiograph of the

(a) (b)

Figure 5: Polynomiographs of 4thKLW and 4thKNS1 methods for f(z) = z3 − 1

4thKLW method and Julia set appears to be butterfly-shaped. There are 12 repelling
free critical and 12 repelling additional fixed points for this method. Fig 5 (b) shows the
polynomiograph of the 4thKNS1 method. There are 6 free critical and 12 additional fixed
points. These points are repelling and we observe some diverging points at the origin.
However, the number of diverging points is less than of the 4thAmit method. Fig 6 (a)
shows the polynomiograph of the 4thKSN2 method. There are 12 free critical points and
18 additional fixed points. 3 free critical points ( 1.0223, ±0.8853i−0.5111) are attracting
since ϕ = 0.0016 < 1 while the rest are repelling. Points near the attracting free critical
points converge to the super-attracting fixed points of f(z). All additional fixed points are
repelling. It is also observed that this method has the highest number of diverging points
because the repelling points surround the origin. Fig 6 (b) shows the polynomiograph of
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(a) (b)

Figure 6: Polynomiographs of 4thKNS2 and 4thKNS3 methods for f(z) = z3 − 1

the 4thKNS3 method. There are 12 free critical and 12 additional fixed points. 3 free
critical points ( 1.3411, ±1.1614i−0.6705) are attracting since ϕ = 0.04 < 1 while the rest
are repelling. All additional fixed points are repelling. However, all starting points are
convergent. This is because the repelling free critical points and additional fixed points
are mainly located on the perpendicular bisector of any two roots. They do not affect
the iterates of nearby points. The 4thOM method is again found as the most efficient
since it has the largest basins of attractions for this cubic polynomial. Finally, we include

Table 3: Comparison of number of free critical points, additional fixed points and diverging
points of the members of UF family for the cubic polynomial f(z) = z3 − 1.

Methods No N+ ND

4thOM 6 6 0

4thAmit 18 18 110

4thKLW 12 12 0

4thKNS1 6 12 36

4thKNS2 12 18 692

4thKNS3 12 12 0

the polynomiographs of the six methods for generic cubic polynomial f(z) = qe=0 whose
roots are −1, 0, 1. They are shown in Figs. 7 and 8. All starting points are convergent
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for the six methods. We can find bulb and petal shapes in the Julia set. The 4thOM
method is the most efficient method as it has the smallest Julia set. The 4thAmit and
4thKNS2 methods are the most chaotic methods because the shape of their Julia set are
most complex. These observations were also made with the first two polynomials.

(a) (b) (c)

Figure 7: Polynomiographs of 4thOM, 4thAmit and 4thKLW methods for f(z) = z3 − z

(a) (b) (c)

Figure 8: Polynomiographs of 4thKNS1, 4thKNS2 and 4thKNS3 methods for f(z) = z3−z

6 Conclusion

In this work, we prove the Scaling Theorem for the unifying family. We explain the
dynamic behaviour of its six members for the polynomials, f(z) = z2−1 and f(z) = z3−1
by considering their free critical and additional fixed points. We found that these points
can interfere with the root search and cause the method to behave chaotically and thus
reducing their basins of attractions. We found that the Ostrowski method is the best
efficient of the six methods as it behaves the least chaotically and has the largest basins of
attractions. We conclude that our analysis on the dynamic behaviour of iterative methods
can be used as a tool for comparing methods of same of convergence order using computer
generated plots. This enable us to choose the best efficient method from a family.
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