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1 Introduction

Finding iterative methods for solving nonlinear equations is an important area of research
in numerical analysis at it has interesting applications in several branches of pure and
applied science can be studied in the general framework of the nonlinear equations f(x) =
0. Due to their importance, several numerical methods have been suggested and analyzed
under certain condition. These numerical methods have been constructed using different
techniques such as Taylor series, homotopy perturbation method and its variant forms,
quadrature formula, variational iteration method, and decomposition method ( see [1-9]).
In this study we describe new iterative free from second derivative to find a simple root
rof a nonlinear equation. In the implementation of the method of Noor et al. [10], one
has to evaluate the second derivative of the function, which is a serious drawback of these
methods. To overcome these drawbacks, we modify the predictor-corrector Halley method
by replacing the second derivatives of the function by its suitable finite difference scheme.
As we will show, the obtained two-step methods are of fourth-order of convergence and
require three evaluations of the function f(x). The procedure of removing the derivatives
usually increases the number of functional evaluations per iteration. Commonly in the
literature the efficiency of an iterative method is measured by the efficiency index defined
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as I ≈ p1/d (see[11]), where pis the order of convergence and dis the total number of
functional evaluations per step. Therefore these methods have efficiency index 41/3 ≈
1.5874 that is, the new family of methods reaches the optimal order of convergence four,
which is higher than 21/2 ≈ 1.4142 of the Steffensen’s method (SM) (see [12]), 31/4 ≈
1.3161of the DHM method (see [13]), 91/5 ≈ 1.552 of the method [14] and our methods
are equivalent to the LZM [15] and CTM [16]. We prove that our methods are of fourth-
order convergence and present the comparison of these new methods with other methods.
Several examples are given to illustrate the efficiency and performance of these methods.

2 Iterative methods

For the sake completeness, we recall Newton, Halley, Traub, and Homeier methods. These
methods as follows:
Algorithm 2.1. For a given x0, find the approximate solution xn+1 by the iterative
scheme

xn+1 = xn −
f(xn)

f ′(xn)
.

It is well known that algorithm 2.1 has a quadratic convergence.
Algorithm 2.2. For a given x0, compute approximates solution xn+1 by the iterative
scheme

xn+1 = xn −
2f(xn)f ′(xn)

2f ′2(xn) − f(xn)f ′′(xn)
.

This is known as Halley’s method and has cubic convergence [6].

Algorithm 2.3. For a given x0, compute approximates solution xn+1 by the iterative
schemes

yn = xn − f(xn)
f ′(xn)

,

xn+1 = yn − f(yn)
f ′(yn)

.

Algorithm 2.3 is called the predictor-corrector Newton method (PCN) and has fourth-
order convergence (see [16]). Homeier [17] derived the following cubically convergent
iteration scheme
Algorithm 2.4. For a given x0, compute approximates solution xn+1 by the iterative
schemes

yn = xn −
f(xn)

f ′(xn)
,

xn+1 = xn −
f(xn)

2

(
1

f ′(xn)
+

1

f ′(yn)

)
.

The first and the second derivatives with respect to y, which may create some problems.
To overcome this drawback, several authors have developed involving only the first deriva-
tives. This idea plays a significant part in developing our new iterative methods free from
first and second derivatives with respect to y. To be more precise, we now approximate
f ′(yn), to reduce the number of evaluations per iteration by a combination of already
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known data in the past steps. Toward this end, an estimation of the function P1(t) is
taken into consideration as follows

P1(t) = a + b(t − xn) + c(t − xn)2

P ′

1(t) = b + 2c(t − xn)

By substituting in the known values

P1(yn) = f(yn) = a + b(yn − xn) + c(yn − xn)2

P ′

1(yn) = f ′(yn) = b + 2c(yn − xn)
P1(xn) = f(xn) = a
P ′

1(xn) = f ′(xn) = b

we could easily obtain the unknown parameters. Thus we have

f ′(yn) = 2

(
f(yn) − f(xn)

yn − xn

)
− f ′(xn) = P1(xn, yn) (1)

At this time, it is necessary to approximate f ′′(yn), with a combination of known
values Accordingly, we take account of an interpolating polynomial

P2(t) = a + b(t − xn) + c(t − xn)2 + d(t − xn)3

and also consider that this approximation polynomial satisfies the interpolation conditions
f(xn) = P2(xn), f(yn) = P2(yn), f ′(xn) = P

′

2(xn) and f ′(yn) = P
′

2(yn), By substituting
the known values in P2(t) we have a system of three linear equations with three unknowns.
By solving this system and simplifying we have

f ′′(yn) =
2

yn − xn

(
f(yn) − f(xn)

yn − xn

− f ′(xn)

)
= P2(xn, yn). (2)

then algorithm 2.3 can be written in the form of the following algorithm.
Algorithm 2.5. For a given x0, compute approximates solution xn+1 by the iterative
schemes

yn = xn − f(xn)
f ′(xn)

,

xn+1 = yn − f(yn)
P1(xn,yn)

.

This method has fourth-order convergence is called Khattri method (KM) [18]. Now
using equations (1) and (2) to suggest the following new iterative methods for solving
nonlinear equation, and use Algorithm 2.1 as predictor and Algorithm 2.2 as a corrector.
It is established that the following new methods have convergence order four, which will
denote by Hafiz and Bahgat Methods (HBM1-HBM5).
HBM1: For a given x0, compute approximates solution xn+1 by the iterative schemes

yn = xn −
f(xn)

f ′(xn)
,

xn+1 = yn −
2f(yn)P1(xn, yn)

2P 2
1 (xn, yn) − f(yn)P2(xn, yn)

.

(HBM1) is called the new two-step modified Halley’s method free from second and first
derivative with respect to y, for solving nonlinear equation f(x) = 0.
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HBM2: For a given x0, compute approximates solution xn+1 by the iterative schemes

yn = xn −
f(xn)

f ′(xn)
,

xn+1 = xn −
f(xn)

2

[
1

f ′(xn)
+

1

P1(xn, yn)

]
.

HBM3: For a given x0, compute approximates solution xn+1 by the iterative schemes

yn = xn −
f(xn)

f ′(xn)
,

xn+1 = yn −
f(yn)

P1(xn, yn)
−

f 2(y)P2(xn, yn)

2P 3
1
(xn, yn)

.

If P2(xn, yn) = 0, then HBM1 and HBM3 deduces Algorithm 2.5.
HBM4: For a given x0, compute approximates solution xn+1 by the iterative schemes

yn = xn −
f(xn)

f ′(xn)
,

xn+1 = yn −

[
1 +

(
f(xn)

f ′(xn)

)2
]

f(yn)

P1(xn, yn)
.

HBM5: For a given x0, compute approximates solution xn+1 by the iterative schemes

yn = xn −
f(xn)

f ′(xn)
,

xn+1 = yn + f(yn)

[
1

f ′(xn)
−

4

f ′(xn) + P1(xn, yn)

]
Let us remark that, in terms of computational cost, the developed methods (HBM1-
HBM5) require only three functional evaluations per step. So, they have efficiency indices
41/3 ≈ 1.5874, that is, the new family of methods (HBM1- HBM5) reaches the optimal
order of convergence four, conjectured by Kung and Traub [16].

3 Convergence analysis

Let us now discuss the convergence analysis of the above mentioned methods (HBM1-
HBM5).

Theorem 3.1: Let r be a sample zero of sufficient differentiable function f :⊆ R → R
for an open interval I. If x0is sufficiently close to r, then the two-step method defined by
(HBM1)has fourth-order convergence.

Proof. Consider to

yn = xn −
f(xn)

f ′(xn)
, (3)
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xn+1 = yn −
2f(yn)P1(xn, yn)

2P 2
1 (xn, yn) − f(yn)P2(xn, yn)

. (4)

Let r be a simple zero of f . Since f is sufficiently differentiable, by expanding f(xn) and
f ′(xn) about r, we get

f(xn) = f(r)+(xn−r)f ′(r)+
(xn − r)2

2!
f (2)(r)+

(xn − r)3

3!
f (3)(r)+

(xn − r)4

4!
f (4)(r)+ · · · ,

then
f(xn) = f ′(r)[en + c2e

2
n + c3e

3
n + c4e

4
n + · · · ], (5)

and

f ′(xn) = f ′(r)[1 + 2c2en + 3c3e
2
n + 4c4e

3
n + 5c5e

4
n + · · · ], (6)

where ck = 1
k!

f(k)(r)
f ′(r)

, k = 2, 3, . . . and en = xn − r.

Now from (5) and (6), we have

f(xn)

f ′(xn)
= en − c2e

2
n + 2(c2

2 − c3)e
3
n + (7c2c3 − 4c3

2 + 3c4)e
4
n + · · · , (7)

From (3) and (7), we get

yn = r + c2e
2
n + 2(c3 − c2

2)e
3
n + (−7c2c3 + 4c3

2 + 3c4)e
4
n + · · · , (8)

From (8), we get,

f(yn) = f ′(r)[(yn − r) + c2(yn − r)2 + c3(yn − r)3 + c4(yn − r)4 + · · · ]
= f ′(r)[c2e

2
n + 2(c3 − c2

2)e
3
n + (5c3

2 + 3c4 − 7c2c3)e
4
n+

+(4c5 + 24c3c
2
2 − 10c2c4 − 6c2

3 − 12c4
2)e

5
n + · · · ]

(9)

and
f(yn)

P1(xn, yn)
= c2e

2
n + 2(c3 − c2

2)e
3
n + (3c3

2 − 6c2c3 + 3c4)e
4
n + · · · (10)

P2(xn, yn)

P1(xn, yn)
= 2c2 + 4(c3 − c2

2)en + 2(4c3
2 − 7c2c3 + 3c4)e

2
n + · · · (11)

f(yn)

P1(xn, yn)

P2(xn, yn)

P1(xn, yn)
= 2c2

2e
2 +8(c2c3−c3

2)e
3
n +2(11c4

2−21c2
2c3 +6c2c4 +8c2

3)e
4
n + · · · (12)

Using equations (8), (9) and (12) in (4), we have :

xn+1 = r − c2c3e
4
n + O(e5

n) (13)

From (13) and en+1 = xn+1 − r, we have:

en+1 = −c2c3e
4
n + O(e5

n)
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which shows that (HBM1) has fourth-order convergence.

Theorem 3.2: Let r be a sample zero of sufficient differentiable function f : ⊆ R →
R for an open interval I. If x0is sufficiently close to r, then the two-step method defined
by (HBM3) has fourth-order convergence.

Proof. Consider to

yn = xn −
f(xn)

f ′(xn)
, (14)

xn+1 = yn −
f(yn)

P1(xn, yn)
−

f 2(y)P2(xn, yn)

2P 3
1
(xn, yn)

. (15)

Let r be a simple zero of f . Since f is sufficiently differentiable, by expanding f(xn) and
f ′(xn) about r, we get

f(xn) = f(r)+(xn−r)f ′(r)+
(xn − r)2

2!
f (2)(r)+

(xn − r)3

3!
f (3)(r)+

(xn − r)4

4!
f (4)(r)+ · · · ,

then
f(xn) = f ′(r)[en + c2e

2
n + c3e

3
n + c4e

4
n + · · · ], (16)

and
f ′(xn) = f ′(r)[1 + 2c2en + 3c3e

2
n + 4c4e

3
n + 5c5e

4
n + · · · ], (17)

where ck = 1
k!

f(2)(r)
f ′(r)

, k = 1, 2, 3, . . . and en = xn − r.

Now from (16) and (17), we have

f(xn)

f ′(xn)
= en − c2e

2
n + 2(c2

2 − c3)e
3
n + (7c2c3 − 4c3

2 + 3c4)e
4
n + · · · , (18)

From (14) and (18), we get

yn = r + c2e
2
n + 2(c3 − c2

2)e
3
n + (−7c2c3 + 4c3

2 + 3c4)e
4
n + · · · , (19)

From (19), we get,

f(yn) = f ′(r)[(yn − r) + c2(yn − r)2 + c3(yn − r)3 + c4(yn − r)4 + · · · ]
= f ′(r)[c2e

2
n + 2(c3 − c2

2)e
3
n + (5c3

2 + 3c4 − 7c2c3)e
4
n+

+(4c5 + 24c3c
2
2 − 10c2c4 − 6c2

3 − 12c4
2)e

5
n + · · · ]

(20)

and
f(yn)

P1(xn, yn)
= c2e

2
n + 2(c3 − c2

2)e
3
n + (3c3

2 − 6c2c3 + 3c4)e
4
n + · · · (21)

[
f(yn)

P1(xn, yn)

]2

= c2
2e

4
n + 4(c2c3 − c3

2)e
5
n + · · · (22)

P2(xn, yn)

P1(xn, yn)
= 2c2 + 4(c3 − c2

2)en + 2(4c3
2 − 7c2c3 + 3c4)e

2
n + · · · (23)
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1

2

[
f(yn)

P1(xn, yn)

]2
P2(xn, yn)

P1(xn, yn)
= c3

2e
4 + 6(c2

2c3 − c4
2)e

5
n + · · · (24)

combining (19) - (24), we have :

xn+1 = r − c2c3e
4
n + O(e5

n)(25)

From (25), en+1 = xn+1 − rand en = xn − r, we have:

en+1 = −c2c3e
4
n + O(e5

n)

which shows that (HBM3) has fourth-order convergence. In Similar way, we observe that
the HBM2, HBM4 and HBM5 have also fourth order convergence as follows

en+1 = c3
2 − 3c4 − c2c3)e

4
n + O(e5

n), (HBM2)
en+1 = (c3

2 − c2 − c2c3)e
4
n + O(e5

n), (HBM4)
en+1 = (3c3

2 − c2c3)e
4
n + O(e5

n). (HBM5).

4 Numerical examples

For comparisons, we have used the fourth-order Jarratt method [19] (JM) and Ostrowski’s
method (OM) [11] defined respectively by

yn = xn − 2
3

f(xn)
f ′(xn)

xn+1 = xn −
[
1 − 3

2
f ′(yn)−f ′(xn)
3f ′(yn)−f ′(xn)

]
f(xn)
f ′(xn)

and
yn = xn − f(xn)

f ′(xn)

xn+1 = yn − f(xn)
f(xn)−2f(yn)

f(yn)
f ′(xn)

.

We consider here some numerical examples to demonstrate the performance of the
new modified two-step iterative methods, namely (HBM1) - (HBM5). We compare the
classical Newton’s method (NM), the predictor-corrector Newton method (PCN), Jarratt
method (JM), the Ostrowski’s method (OM) and the new modified two-step methods
(HBM1) - (HBM5), in this paper. In the Tables 1, 2 the number of iteration is n = 5 for
all our examples. But in Table 1 our examples are tested with precision ε = 10−200. The
following stopping criteria is used for computer programs: |f(xn+1)| < ε.

And the computational order of convergence (COC) can be approximated using the
formula,

COC ≈
ln | (xn+1 − xn)/(xn − xn−1)|

ln | (xn − xn−1)/(xn−1 − xn−2)|

Table 1 shows the difference of the root r and the approximation xn to r, where ris the
exact root computed with 2000 significant digits, but only 25 digits are displayed for xn.
In Table 1, we listed the number of iterations for various methods. The absolute values of
the function f(xn)and the computational order of convergence (COC) are also shown in
Tables 2, 3. All the computations are performed using Maple 15. The following examples
are used for numerical testing:
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f1(x) = x3 + 4x2 − 10, x0 = 1 . f2(x) = sin2 x − x2 + 1, x0 = 1.3 .
f3(x) = x2 − ex − 3x + 2, x0 = 2 . f4(x) = cosx − x, x0 = 1.7 .
f5(x) = (x − 1)3 − 1, x0 = 2.5 . f6(x) = x3 − 10, x0 = 2 .

f7(x) = ex2+7x−30 − 1, x0 = 3.1 .

Results are summarized in Table 1, 2 and Table 3 as it shows, new algorithms are
comparable with all of the methods and in most cases gives better or equal results.

Table 1. Comparison of Number of iterations for various methods required such that

|f(xn+1)| < 10−200.

Method f1 f2 f3 f4 f5 f 6 f7
Guess 1 1.3 2 1.7 2.5 2 3.1
NM 9 8 8 8 9 8 10
PCN 5 4 5 5 5 4 5
JM 5 4 5 5 5 4 5
OM 5 4 5 5 5 4 5
HBM1 4 4 5 5 5 4 6
HBM2 5 4 5 5 5 4 5
HBM3 4 4 5 5 5 4 5
HBM4 5 4 6 5 5 4 5
HBM5 5 4 5 5 5 4 5

5 Conclusions

In numerical analysis, many methods produce sequences of real numbers, for instance the
iterative methods for solving nonlinear equations. Sometimes, the convergence of these
sequences is slow and their utility in solving practical problems quite limited. Convergence
acceleration methods try to transform a slowly converging sequence into a fast convergent
one. Due to this, paper has aimed to give a rapidly convergent two-point class for ap-
proximating simple roots. As high as possible of convergence order was attained by using
as small as possible number of evaluations per full cycle. The local order of our class of
iterations was established theoretically, and it has been seen that our class supports the
optimality conjecture of Kung-Traub [16]. In the sequel, numerical examples have used in
order to show the efficiency and accuracy of the novel methods from our suggested second
derivative-free class. Finally, it should be noted that, like all other iterative methods, the
new methods from the class (HBM1)-(HBM5) have their own domains of validity and in
certain circumstances should not be used.

Table 2. Comparison of different methods
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Method x0 x5 COC |x5 − r| {|f(x5){|
f1 1
NM 1.3652300134140968457610286 2 2.1e-9 3.6e-19
PCN 1.3652300134140968457608068 3.97 1.5e-185 7.1e-746
JM 1.3652300134140968457608068 3.98 1.5e-185 7.1e-746
OM 1.3652300134140968457608068 3.99 1.4e-185 7.1e-746
HBM1 1.3652300134140968457608068 4 2.1e-236 1e-953
HBM2 1.3652300134140968457608068 3.99 1.4e-185 7.1e-746
HBM3 1.3652300134140968457608068 4 1.2e-243 1.3e-978
HBM4 1.3652300134140968457608068 4 3.6e-123 1.2e-495
HBM5 1.3652300134140968457608068 3.99 1.5e-125 3.1e-505
f2 1.3
NM 1.4044916482153412260350868 2 1.5e-15 4.8e-33
PCN 1.4044916482153412260350868 4 3.0e-276 8.8e-1109
JM 1.4044916482153412260350868 4 2.0e-277 1.6e-1113
OM 1.4044916482153412260350868 4 3.0e-276 8.8e-1109
HBM1 1.4044916482153412260350868 4 5.0e-339 1.0e-1360
HBM2 1.4044916482153412260350868 4 3.0e-276 8.8e-1109
HBM3 1.4044916482153412260350868 4 2.3e-340 5.1e-1366
HBM4 1.4044916482153412260350868 4 7.0e-275 2.2e-1103
HBM5 1.4044916482153412260350868 4 6.1e-226 4.8e-907
f3 2
NM 0.2575302854398607604553673 2 9.8e-12 3.4e-25
PCN 0.2575302854398607604553673 3.99 2.3e-91 5.5e-371
JM 0.2575302854398607604553673 4 4.1e-93 7.0e-378
OM 0.2575302854398607604553673 3.99 2.3e-91 5.5e-371
HBM1 0.2575302854398607604553673 3.99 8.0e-49 8.3e-201
HBM2 0.2575302854398607604553673 3.99 2.3e-91 5.5e-371
HBM3 0.2575302854398607604553673 3.99 9.5e-61 1.6e-248
HBM4 0.2575302854398607604553673 3.95 5.1e-14 2.6e-60
HBM5 0.2575302854398607604553673 4 2.2e-156 2.9e-231
f4 1.7
NM 0.7390851332151606416553121 1.99 2.3e-14 2.0e-30
PCN 0.7390851332151606416553121 3.99 2.6e-190 1.9e-766
JM 0.7390851332151606416553121 3.99 3.5e-196 6.1e-790
OM 0.7390851332151606416553121 3.99 2.6e-190 1.9e-766
HBM1 0.7390851332151606416553121 3.99 7.2e-196 6.6e-790
HBM2 0.7390851332151606416553121 3.99 2.6e-190 1.9e-766
HBM3 0.7390851332151606416553121 3.99 2.7e-196 6.7e-789
HBM4 0.7390851332151606416553121 4 5.0e-111 1.2e-448
HBM5 0.7390851332151606416553121 3.99 9.7e-184 6.9e-740

Table 3. Comparison of different methods
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Method x0 x5 COC |x5 − r| |f(x5)|
f5 2.5
NM 2.0000000000000113791023781 2 1.0e-5 3.4e-12
PCN 2 3.99 4.1e-121 5.9e-488
JM 2 3.99 4.1e-121 5.9e-488
OM 2 3.99 4.1e-121 5.9e-488
HBM1 2 4 1.1e-141 1.9e-566
HBM2 2 3.99 4.1e-121 5.9e-488
HBM3 2 4 4.9e-154 6.1e-620
HBM4 2 4 3.3e-175 1.2e-704
HBM5 2 3.99 4.7e-88 3.9e-355
f6 2
NM 2.1544346900318837217592936 2 2.2e-16 3.2e-33
PCN 2.1544346900318837217592936 4 1.0e-301 1.3e-1210
JM 2.1544346900318837217592936 4 1.0e-301 1.3e-1210
OM 2.1544346900318837217592936 4 1.0e-301 1.3e-1210
HBM1 2.1544346900318837217592936 4 1.2e-329 1.1e-1322
HBM2 2.1544346900318837217592936 4 1.0e-301 1.3e-1210
HBM3 2.1544346900318837217592936 4 4.2e-330 1.4e-1324
HBM4 2.1544346900318837217592936 4 3.3e-223 7.2e-936
HBM5 2.1544346900318837217592936 4 3.2e-246 4.0e-988
f 7 3.1
NM 3.0000000000899925734814359 2.03 3.6e-4 1.1e-7
PCN 3 3.99 5.0e-101 7.7e-405
JM 3 3.99 5.2e-98 1.0e-392
OM 3 3.99 5.0e-101 7.7e-405
HBM1 3 3.99 1.1e-46 4.9e-187
HBM2 3 3.99 5.0e-101 7.7e-405
HBM3 3 3.99 1.2e-70 6.0e-283
HBM4 3 3.99 3.0e-102 1.0e-409
HBM5 3 3.99 1.0e-57 8.7e-231
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Abstract

In this paper we study an autocatalytic reaction and we derive the differential

equations arising from this reaction. We analyze these equations using phase-space
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cation. Interestingly these equations would also represent a population model. All
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1 Introduction

The dynamics and chemistry of oscillating reactions has been the subject of study for
the last several years, starting with the work of Boris Belousov who stumbled upon an
oscillating chemical reaction system. In 1961, ten years after Belousov’s initial experi-
ments, new work was initiated by A. M. Zhabotinskii. He quickly reproduced Belousov’s
results, and soon began working on similar systems. This reaction system, now commonly
referred to as the Belousov-Zhabotinskii reaction has been thoroughly studied from both
chemical and mathematical perspectives. There are now a large number of both ‘real’ and
‘toy’ systems that provide insight into the complex behavior of autocatalytic oscillating
systems [7, 9]. Among them are the Lotka-Volterra, the Oregonator and the Brusselator.
In this paper we put forward a simple two-gender based population model which is also
based on an autocatalytic chemical reaction.
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2 The Model

We assume that a chemical system is subject to a mass-action kinetics. Considering the
kinetics of a reaction, this law states that the rate of an elementary reaction is proportional
to the product of the concentrations of the participating molecules. Consider the following
sequence of chemical reactions,

A + y
k1

GGGGGBF GGGGG

−k1

x + B (1a)

x
k2

GGGGGBF GGGGG

−k2

y + 2x (1b)

x + 2y
k3

GGGGGBF GGGGG

−k3

y (1c)

C + x
k4

GGGGGBF GGGGG

−k4

y + D (1d)

E + y
k5

GGGGGBF GGGGG

−k5

y + F (1e)

Where k1,k2,k3,k4 and k5 are the rates of the forward reactions, the negative counterparts
are the rates of the backward reactions. x and y are the autocatalysts, since they are
generated during the sequence of reactions and catalyze the reaction. A, B, C, D are
some four chemicals. We denote the concentration of the chemicals by the same symbols
as the chemicals themselves. The net result of these equations is

A + C GGGGBF GGGG B + D.

Let us consider equation (1a). From the Law of Mass Action this implies

dx

dt
∝ y,

and (1b) ⇒ that
dx

dt
∝ −yx2,

from which after putting in suitable proportionality constants (a > 0, b > 0) we have

dx

dt
= by − ayx2.

Next from equations (1c) and (1e) we obtain that

dy

dt
∝ xy2

and
dy

dt
∝ −y
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respectively. After putting in suitable proportionality constants we have

dx

dt
= −y − by + ay2x.

If x and y denote the composition variables of the two intermediates or the auto-
catalysts, the rate equations after adjusting suitable proportionality constants take the
general form:

dx

dt
= f(x, y) (2)

dy

dt
= g(x, y)

The system we propose for the autocatalysts x and y is

dx

dt
= by − ayx2 (3)

dy

dt
= −y − by + axy2

The differential system (3) is an autonomous system as there is no explicit dependence
on time t. We assume that f and g are continuous and satisfy the Lipschitz condition in
a certain bounded domain, D, of the phase space (x, y).

2.0.1 A Two-Gender Population Model

The system of equations (3), interestingly could also represent a population model in
which one considers two sexes involved in reproduction. (see for example [11] and [3]).
In [11], the authors consider a bisexual, non-marriage model which involves a function
H [N1(t), N2(t)] which is taken to be a homogeneous function in N1(t) and N2(t), (N1(t)
and N2(t) represent the populations of the male and female species respectively) for
the sake of scale independence. If we discard the scale independence since, in any case
scale-independence is an artificial assumption, in our model this function need not be a
homogeneous function in N1(t) and N2(t). This could be a topic of further study.

3 Analysis of the system

We now perform an analysis of the system.

The equilibrium points are (0, 0), (±
√

b
a
,± 1+b

√

ab
).

The last two equilibrium points exist only if ab > 0 and b �= −1. Since our choice for
the parameters a and b is ≥ 0, all three equilibrium points exist. A quick observation of
the system (3) shows that the line y = 0 is a continuum of equilibrium points. Also it can
be seen that the system invariant under the symmetry (x, y) → (−x,−y), consequently
one needs to study its dynamics only in a half-plane.

Also since the system has a continuum of equilibrium points on the line y = 0, it is
more convenient to study the system without this continuum. We therefore introduce
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a change in the independent variable t → τ through dτ = ydt, and we examine the
associated system

dx

dτ
= b − ax2

dy

dτ
= −1 − b + axy. (4)

We next linearize the system (4) about the equilibrium points (±
√

b
a
,± 1+b

√

ab
), to obtain

the coefficient Jacobian Matrix respectively as(
∓2

√
ab 0

±
√

a(b+1)
√

b
±
√

ab

)
(5)

Next, we find the Eigenvalues of (5), they are {−2
√

ab,
√

ab} and {−
√

ab, 2
√

ab} cor-
responding to the two equilibrium points respectively. Since the Eigenvalues are positive
and negative the equilibrium points are saddle points.

�1.0 �0.5 0.0 0.5 1.0

�1.0

�0.5

0.0

0.5

1.0

Figure 1: The two equilibrium points (±
√

b
a
,± 1+b

√

ab
), with a = 18 and b = 1.

That the equilibrium points are saddle points can also be seen from the figure Fig. 1,
the equilibrium points are marked by the intersection of the dashed lines.

4 Absence of closed orbits

We now state the well-known
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Figure 2: The rotation of the vector field of the system (4) showing the index of the
critical point as -1.

Bendixson’s criterion for the absence of closed orbits. Statement of Bendixson’s

Criterion: If on a simply connected region D ⊂ R2 the expression (if we consider a system
in the form as in equation (2)), ∂f

∂x
+ ∂g

∂y
is not identically zero and does not change sign,

then equation (2) has no closed orbits lying entirely in D.
In order to apply Bendixson’s Criterion consider the system (3) with f(x, y) = by −

ayx2 and g(x, y) = −y − by + axy2, then the quantity ∂f

∂x
+ ∂g

∂y
= −b − 1.

In order to satisfy Bendixson’s Criterion, b �= 1 and b ≥ 0. For b satisfying these
conditions the system has no closed orbits. Since we choose in any case that b �= 1 and
b ≥ 0 we can say that the system under consideration has no closed orbits.
Topological Index or Poincaré Index A fundamental concept in vector field topology
is the so-called Poincaré index of a simple closed curve: It measures the number of ro-
tations of the vector field while traveling along the curve in a positive direction [8]. The
index of a critical point is the index of a simple closed curve around the critical point
enclosing no other singular point. Mathematically this is calculated for a closed curve γ
by the following integral index γ = 1

2π

∮
γ
dφ where φ is the angle the vector field traverses

around the curve γ in an anti-clockwise direction.
From Fig. 2 it can be seen that the vector field makes one complete rotation in the

clockwise direction around a simple closed curve surrounding the equilibrium point. Hence
the index of the critical point is -1.

This also shows that there are no closed orbits surrounding the equilibrium point. By
symmetry the second equilibrium point can also be seen to have index -1.

5 Poincaré Compactification

In order to study the behavior of the trajectories of a planar polynomial differential system

ẋ = P(x, y)

ẏ = Q(x, y) (6)
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near infinity a compactification is generally used. We use the the Poincaré compactifica-
tion [4, 5]. The Poincaré compactification relies on stereographic projection of the sphere
onto the plane, for studying the behavior of trajectories near infinity making use the
so called Poincaré sphere, introduced by Poincaré [6]. This has the advantage that the
singular points at infinity are spread out along the equator of the sphere. The Poincaré
compactification, enables one to draw the trajectories in a finite region and controls the
orbits which tend to or come from infinity.

Poincaré compactification works as follows: Firstly we consider R2 as a plane in R3 de-
fined by (y1, y2, y3) = (x, y, 1). Next, we consider the sphere S

2 = y ∈ R3 : y2
1 + y2

2 + y2
3 = 1

which we will call here the Poincaré sphere; This sphere is tangent to R2 at the point (0,
0, 1). We may divide this sphere into H+ = y ∈ S

2 : y3 > 0 (the northern hemisphere),
H− = {y ∈ S

2 : y3 < 0} (the southern hemisphere) and S
1 = {y ∈ S

2 : y3 = 0} (the
equator).

We consider the projection of the vector field X from R2 to S
2 given by the projections

f+ : R2 → S
2 and f− : R2 → S

2. Or f+(x) (respectively, f−(x)) is the intersection of the
straight line passing through the point y and the origin with the northern (respectively,
southern) hemisphere of S

2.
f+(x) =

(
x
∆

, y

∆
, 1

∆
,
)
,f−(x) =

(
− x

∆
,− y

∆
,− 1

∆
,
)

where ∆(x) =
√

x2 + y2 + 1.
We thus obtain induced vector fields in each hemisphere. The induced vector field on

H+ is X̄(y) = Df+(x)X(x), where y = f+(x), and the one in H− is X̄(y) = Df−(x)X(x),
where y = f−(x) where DX represents the linear part of the vector field X.

As is usual in working with curved surfaces, we use charts or planes for calculational
purposes. For S

2 we use the six local planes given by Uk = {y ∈ S
2 : yk > 0}, Wk = {y ∈

S
2 : yk < 0} for k = 1, 2, 3. The corresponding local maps φk : Uk → R2 and ψk : Wk → R2

are defined as (ym/yk, yn/yk) for m < n and m, n �= k. We denote by z = (u, w) the value
of φk(y) or ψk(y) for any k, such that (u, w) will take on different values depending on
the plane we are considering. The points of S

1 in any chart have w = 0.
With this preliminary notation it can be deduced (see [2]) that on U1,for example

(u, w) =
(

y

x
, 1

x

)
and for system (6) we have

u̇ = wd

[
−uP

(
1

w
,
u

w

)
+ Q

(
1

w
,
u

w

) ]
,

ẇ = −wd+1P

(
1

w
,
u

w

)
. (7)

Where d is the maximum of the degree of the polynomial fields P or Q. On the plane U2,

u̇ = wd

[
uP

(
u

w
,

1

w

)
− uQ

(
u

w
,

1

w

) ]
,

ẇ = −wd+1Q

(
u

w
,

1

w

)
. (8)

On the plane U3 it is

u̇ = P(u, w) (9)

ẇ = Q(u, w). (10)
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For the other three planes Wi, i = 1, 2, 3, the expression is the same as for the U ′

is
multiplied by (−1)d−1, for i = 1, 2, 3.

With these equations we evaluate U1, U2, W1, W2, for the system of equations (3) with
a = 1 and b = 1, to obtain its Poincaré Compactification.

Using (x = 1/z2, y = z1/z2): The differential system on the U1 chart is:

z′1 = −z1z
2
2 + 2z1 − 2z2

2

z′2 = −z3
2 + z2

(0, 0) is an unstable node here. The differential system on the W1 chart is:

z′1 = z1z
2
2 − 2z1 − 2z2

2

z′2 = z3
2 − z2

The differential system on the U2 chart is:

z′1 = z2
2 − 2z2

1 + 2z1z
2
2

z′2 = 2z3
2 − z2z1

Here (0,0) is nonelementary .
The differential system on the W2 chart is:

z′1 = z2
2 − 2z2

1 − 2z1z
2
2

z′2 = −2z3
2 − z2z1

Using the P4 software described in [2] we plot the phase portrait on the Poincaré disk.
Fig. 4 shows the stable and unstable separatrices on the Poincaré disk along with two
saddle points. Two other equilibrium points, one a stable focus and the other an unstable
focus are located on the equator of S

2 at S
2. These can be seen in Fig. 4.

6 Existence of a Center Manifold

We now try to see if there is any region in the phase-space in which the solutions are
invariant. To this end we set about finding an invariant center-manifold. But first we
need a few technical preliminaries: We consider vector fields of the form

ẋ = Ax + f̂(x, y), (x, y) ∈ Rc × Rs,

ẏ = By + ĝ(x, y) (11)

where f̂(0, 0) = 0, Df̂(0, 0) = 0, ĝ(0, 0) = 0, Dĝ(0, 0) = 0. In the above, A is a c × c
matrix having eigenvalues with zero real parts, B is an s × s matrix having eigenvalues
with negative real parts, and f̂ and ĝ are Cr functions (r ≥ 2).

Definition 6.1 [10] (Center Manifold) An invariant manifold will be called a center man-
ifold for (11) if it can locally be represented as follows

W c(0) = {(x, y) ∈ Rc × Rs | y = h(x), |x| < δ, h(0) = 0, Dh(0) = 0}

for δ sufficiently small.
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Figure 3: The phase portrait on the Poincaré disk

Figure 4: The Separatrices and the Equilibrium points on the Poincaré disk
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Theorem 6.1 (Existence) There exists a Cr center manifold for (11). The dynamics of
(11) restricted to the center manifold is, for u sufficiently small, given by the following
c-dimensional vector field,
u̇ = Au + f̂(u, h(u)), u ∈ Rc.

The system (3) can be re-formulated in terms of the functions f(x, y) and g(x, y) and A
and B with

A = 0; B = −1; f̂(x, y) = by − ayx2; ĝ(x, y) = −by + axy2;

Then clearly the conditions for the existence of a center manifold are satisfied. In the
above, A is a c × c matrix having eigenvalues with zero real parts, in our example A is
a scalar equal to 0, B is an s × s matrix having eigenvalues with negative real parts, in
this case B is a negative scalar = −1, and f̂ and ĝ are Cr functions (r ≥ 2). Then by
Theorem (6.1), there exists a center manifold to be obtained from the equation

u̇ = Au + f̂(u, h(u)), that is u̇ = 0 + f̂(u, h(u)). We obtain h(u) using a method put
forth in [10]. We outline the procedure briefly to obtain the function h(x). We derive an
equation that h(x) (or h(u)) must satisfy in order for its graph to be a center manifold
for (3). Towards this end let us assume that we have a center manifold

W 2(0) = {(x, y) ∈ R 2 × R 2 | y = h(x), |x| < δ, h(0) = 0, Dh(0) = 0},

Let h(x) = cx + dx2 + sx3 . . ., where c and d and s are constants to be determined.

Starting with the assumption of invariance of W 2(0) under the dynamics of (3), we
derive a quasilinear partial differential equation that h(x) satisfies. This is derived in the
following manner: The (x, y) coordinates of any point on the center manifold W 2(0) must
satisfy the function

y = h(x) (12)

If we differentiate Equation (12) with respect to t, we obtain

ẏ =
h(x)

dt
ẋ. (13)

Since any point on W 2(0) satisfies the dynamics of (3), so (ẋ, ẏ) from (3) should
satisfy (13). In general equation (11) could then be written as

ẋ = Ax + f̂(x, h(x)),

ẏ = Bh(x) + ĝ(x, h(x)). (14)

Then equation (11) becomes

N ≡ Dh(x)[Ax + f̂(x, h(x))] − Bh(x) + ĝ(x, h(x)) (15)

If equation (15) is solved we obtain the invariant center manifold h(x).
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7 Computation of the Center Manifold

Consider (3), for the purpose of computing the center manifold we set the functions
f̂(x, y), and ĝ(x, y) from equation (11) as

f̂(x, y) ≡ by − ayx2

ĝ(x, y) ≡ −by + axy2,

constants A = 0 and B = −1. Let h(x) = cx + dx2 + sx3 . . . Then the system satisfies the
conditions of Theorem (6.1) required for the existence of a center manifold. Substituting
for h(x) we have

Dh(x)[Ax + f̂(x, h(x))] − Bh(x) + ĝ(x, h(x))

≡ (c + 2dx + 3sx2)[x
(
b − ax2

)
(c + x(d + sx))]

−(−1)(cx + dx2 + sx3 . . .) + ax3(c + x(d + sx))2

= x3
(
−2ac2 + 4bcs + 2bd2 + (b + 1)s

)
+ x(

bc2 + (b + 1)c
)

+ x2(3bcd + (b + 1)d) + . . . (16)

Equating coefficients of the powers of x of equation (16) to zero, we obtain s = −2a(b+1)
3b2

, c =
−b−1

b
and d = 0 and hence h(x) = −b−1

b
x − 2a(b+1)

3b2
x3.

Fig. 5 show the center manifold as a thick line along with the level lines of the system
for a = 18, b = 1.

�1.0 �0.5 0.0 0.5 1.0

�1.0

�0.5

0.0

0.5

1.0

Figure 5: The center manifold shown as the thick line, with a = 18 and b = 1.
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8 Conclusion

We formulated a model from an autocatalytic reaction, which thus represents the chemi-
cal reaction. We hypothesized that this could also represent a population model with two
genders. Initially we performed a simple phase plane analysis, and a study of its equi-
librium points. Since the system is a planar polynomial system, we studied its Poincaré
compactification to understand its equilibrium points at infinity and the separatrices.

The theory that we developed so far tells us that equation (3) has an invariant manifold
y = h(x), which we have derived and plotted against the phase portrait of the system in
Fig. 5. While the equilibrium points are saddle points, we have an invariant manifold
which, and as is well-known is not necessarily unique [1].
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Abstract

The dynamics of the classical two-body Coulomb problem in a uniform magnetic

field are explored numerically in order to determine when chaos can occur. The

analysis is restricted to the configuration of planar particles with an orthogonal

magnetic field, for which there is a four-dimensional phase space. Parameters of

mass and charge are chosen to represent physically motivated systems. To check

for chaos, the largest Lyapunov exponent and Poincaré section are determined for

each case. We find chaotic solutions when particles have equal signs of charge. We

find cases with opposite signs of charge to be numerically unstable, but a Poincaré

section shows that chaos occurs in at least one case.

Keywords: low-dimensional chaos, non-linear dynamics, Hamiltonian systems.

1 Introduction

Chaotic systems are bounded dynamical systems that exhibit a sensitive dependence to
initial conditions. Generally, they are aperiodic and have governing equations that are
nonlinear [1]. There is an interest in studying chaos in systems with a small number of
degrees of freedom, such as the three-body gravitational problem [2]. The presence of
chaos in such simple systems suggests that it is a fundamental feature of nature. By
studying the simplest chaotic systems, we can better understand how chaos arises.
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The two-body Coulomb problem in a uniform magnetic field is one of the simplest
classical systems that can exhibit chaos. This is particularly true for the two-dimensional
case, where the charged particles undergo planar motion and the magnetic field is directed
orthogonal to the plane. If the system is simplified any further, for example by removing
the magnetic field or one particle, then the equations become integrable. Thus the problem
is interesting for its simplicity.

The two-body Coulomb problem in a uniform magnetic field is also applicable to a
number of physical situations. It is commonly studied in the context of the classical
hydrogen atom in a magnetic field [3]. Although quantum mechanics is essential for
making accurate predictions for systems on the atomic scale, the classical model can
approximate high energy states and be useful in trying to understand quantum chaos
[4]. The problem may also be relevant for describing the interactions of ions in a strong
magnetic field. This is appropriate, for example, in the magnetic fields found near white
dwarfs and neutron stars, where the properties of matter are drastically modified [5,
6, 7]. In this case, the magnetic field is approximately uniform at the level of particle
interactions. Information about the microscopic interactions in such systems could lead
to observable global consequences, similar to what has been found in large populations of
coupled oscillators [8].

The problem has been studied to various extents by both analytical and numeri-
cal means. On the analytical side, Curilef and Claro obtained solutions for the two-
dimensional problem in the special case where particles have equal mass and equal mag-
nitude of charge [9]. In addition, Pinheiro and MacKay have performed a mathematically
rigorous analysis of the general problem in a recent series of two papers [10, 11]. For the
two-dimensional problem, they found that all solutions are bounded in space and that the
special case of equal gyrofrequencies (q1/m1 = q2/m2) is integrable. Furthermore, they
inferred that chaos exists in cases with opposite signs of charge unless gyrofrequencies
sum to zero. However, they did not establish what happens when the gyrofrequencies
sum to zero and whether there is chaos for cases with equal signs of charge. Due to
the complicated nature of the general solutions, the problem is well suited for numerical
analysis. Previous numerical studies have been performed primarily for the special case of
the classical hydrogen atom in three-dimensional space, which was found to be chaotic by
Schmelcher and Cederbaum [12], as well as Friedrich and Wintgen [3]. However, numerical
studies of the problem for other sets of particles are scant or nonexistent.

The goal of this paper is to investigate the question of what dynamics are possible
in the general solution of the two-dimensional problem. Since the special case in which
charges sum to zero (which includes proton-electron, positron-electron) has been studied
by others [9, 10, 12, 3], we consider cases in which the two charges do not sum to zero. The
charges and masses are chosen to represent cases of physical significance, which reduces
the size of the parameter space to be explored. The equations are then solved numerically
and two methods are used to test for chaos. The first is computation of the largest
Lyapunov exponent, which measures the rate at which nearby trajectories diverge and is
positive (λ > 0) for chaotic solutions. The second is construction of the Poincaré section,
which exhibits a chaotic sea for chaotic solutions. As a result of our numerical analysis,
we discover many chaotic solutions when charges have equal signs. On the other hand,
we find that cases with opposite signs of charge are numerically unstable, which prevents
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the Lyapunov exponent from converging accurately. However, a Poincaré section suggests
that chaos does occur in at least one of these cases. We also investigate the special case
in which gyrofrequencies sum to zero, but are unable to find any chaotic solutions.

2 Equations of motion

In this section, the equations of motion for the problem are presented. First, consider the
problem in Cartesian coordinates, where two charged particles confined to the x-y plane
interact via the Coulomb force in the presence of a uniform magnetic field oriented in
the z direction. Then there is an eight-dimensional phase space, which can be written in
terms of the positions and kinetic momenta of the particles (x1, y1, px1, py1, x2, y2, px2,
py2). The equations of motion read

ṗx1 =
keq1q2(x1 − x2)

[(x1 − x2)2 + (y1 − y2)2]3/2
+

q1B

m1
py1

ṗy1 =
keq1q2(y1 − y2)

[(x1 − x2)2 + (y1 − y2)2]3/2
− q1B

m1

px1

ẋ1 =
1

m1

px1

ẏ1 =
1

m1
py1

ṗx2 =
keq1q2(x2 − x1)

[(x1 − x2)2 + (y1 − y2)2]3/2
+

q2B

m2
py2

ṗy2 =
keq1q2(y2 − y1)

[(x1 − x2)2 + (y1 − y2)2]3/2
− q2B

m2
px2

ẋ2 =
1

m2
px2

ẏ2 =
1

m2
py2 (1)

where B is the magnetic field strength, m1 and m2 are the masses of the particles, q1

and q2 are the electrical charges of the particles, and ke is Coulomb’s constant. There are
four conserved quantities: the energy E, the x-component of linear momentum Px, the
y-component of linear momentum Py, and angular momentum L. These quantities are
given by

E =
p2

1x + p2
1y

2m1
+

p2
2x + p2

2y

2m2
− keq1q2√

(x1 − x2)2 + (y1 − y2)2

Px = p1x + p2x − q1By1 − q2By2

Py = p1y + p2y + q1Bx1 + q2Bx2 (2)

L = (x1p1y − y1p1x) + (x2p2y − y2p2x)

+
1

2
Bq1(x

2
1 + y2

1) +
1

2
Bq2(x

2
2 + y2

2)



26 Vladimir Zhdankin, J. C. Sprott

Although the full equations of motion (Eq. 1) can be solved numerically, it is prefer-
able to use equations in a reduced phase space. Coordinate transformations derived by
Pinheiro and MacKay [10] use the conservation laws to reduce the number of phase space
dimensions from eight to four. The following transformations will require that charges
have a nonzero sum, q1 + q2 �= 0. The case for q1 + q2 = 0 must be treated separately
because the center of mass undergoes a drift, and that transformation will not be con-
sidered here. The reduced phase space consists of the variables r, pr, φ, and pφ, defined
by

r =
√

(x1 − x2)2 + (y1 − y2)2

pr =
[p1x − (q − 1)p2x](x1 − x2) + [p1y − (q − 1)p2y](y1 − y2)

qr

φ =
1

2µ
arctan

(
(p1x + p2x)(x1 − x2) + (p1y + p2y)(y1 − y2)

(p1y + p2y)(x1 − x2) − (p1x + p2x)(y1 − y2)

)
pφ = (p1x + p2x)

2 + (p1y + p2y)
2 (3)

and the new parameters are defined as

m =
1 + m2

m2

q =
1 + q2

q2

µ = B(1 + q2)

pθ = −2B(1 + q2)L + P 2
x + P 2

y

ε =
q2B

1 + q2

=
q − 1

q2
µ (4)

where units have been chosen such that m1 = 1 and q1 = 1. It is clear that r > 0 and
pφ > 0, with singularities located at r = 0 and at pφ = 0. Also note that φ is periodic on
the interval (0, π

µ
).

The equations of motion can obtained by differentiating Eq. 3 with respect to time
and substituting the Cartesian equations of motion (Eq. 1), or alternatively they can be
derived from the Hamiltonian (representing conserved energy),

H =
m

2
p2

r +
m

8

(pθ − pφ)
2

µ2r2
+

mε2

8
r2 +

mε

4µ
(pθ + pφ) +

(
1 − m

q

) (
q − 2

2q

)
pφ

+
ke

(q − 1)r
+

(
1 − m

q

) [
pr sin (2µφ) − 1

2
(εr +

pθ − pφ

µr
) cos (2µφ)

]
p

1/2
φ

(5)

by using Hamilton’s equations for each component of momentum and position,

ẋi =
∂H

∂pi

, ṗi = −∂H

∂xi

(6)
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The equations of motion in the reduced coordinates are then

ṙ = mpr + (1 − m

q
) sin (2µφ)p

1/2
φ

ṗr =
m

4

(pθ − pφ)
2

µ2r3
− mε2

4
r +

ke

(q − 1)r2
+

1

2
(1 − m

q
)(ε − pθ − pφ

µr2
) cos (2µφ)p

1/2
φ

φ̇ = (1 − m

q
)(

q − 2

2q
) +

m

4
(
ε

µ
− pθ − pφ

µ2r2
)

+
1

2
(1 − m

q
)

[
pr sin (2µφ) − 1

2
(εr +

pθ − 3pφ

µr
) cos (2µφ)

]
p
−1/2
φ

ṗφ = −2µ(1 − m

q
)

[
pr cos (2µφ) +

1

2
(εr +

pθ − pφ

µr
) sin (2µφ)

]
p

1/2
φ (7)

The five parameters are the relative mass m (≥ 1), the relative charge q, the strength
of the magnetic field µ, the strength of the Coulomb force ke (≥ 0), and the initial
total momentum pθ. If the first particle is taken to be the less massive of the pair, then
1 ≤ m ≤ 2.

To obtain numerical solutions, a fourth-order Runge-Kutta algorithm with an adaptive
step size is used. We prefer this method over a symplectic integrator because it is much
simpler to implement for the given equations of motion. The solutions are independently
confirmed using MATLAB and PowerBASIC. The accuracy in each case is primarily
checked by monitoring the energy. As numerical error accumulates, the energy given by
Eq. 5 drifts away from the initial energy. Since energy is conserved in the actual solution,
the energy drift is a signature of numerical error. Typically, we demand that the energy
stays constant to six significant digits throughout the simulation.

3 Results

The parameters of m and q are chosen from the physically motivated cases in Table 1.
The table also shows whether any chaotic solutions were found. These cases cover a
range of parameter values, although there are other combinations of particles that may
be interesting but were not considered here.

The particles shown in Table 1 are the proton p, electron e, deuteron d, triton t
(tritium nucleus), helion h (helium-3 nucleus), and alpha particle α (helium-4 nucleus).
Additionally, the antiparticles p̄ and d̄ are included in a case. The case of d̄-α is very
unlikely to occur in nature, but is interesting because of the fact that the gyrofrequencies
sum to zero, for which Pinheiro and MacKay were unable to establish what happens [10].

Out of the cases listed in Table 1, four were found to exhibit chaos. Parameters
and initial conditions that give a chaotic solution for these cases are listed in Table 2.
An estimation of the largest Lyapunov exponent is also given. An example of possible
trajectories in Cartesian coordinates is shown in Fig. 1.

The largest Lyapunov exponent could not be computed accurately for p̄-α. This
is due to numerical error (as deduced from energy drift) that accumulates due to close
approaches of the particles. Since the Coulomb force in this case is attractive, the particles
can come arbitrarily close to the singularity at r = 0, and this causes problems over long
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Table 1: Some possible two-body problems with q1 + q2 �= 0
1 2 m2/m1 q2/q1 m q Chaotic?
p p 1 1 2 2 No, integrable
p d 2 1 1.5 2 No
p h 3 2 4/3 1.5 Yes
p t 3 1 4/3 2 Yes
p α 4 2 1.25 1.5 No
d t 1.5 1 5/3 2 Yes
d α 2 2 1.5 1.5 No, integrable
e α 8000 -2 1.000125 0.5 No
p̄ α 4 -2 1.25 0.5 Yes
d̄ α 2 -2 1.5 0.5 No

Figure 1: An example of possible trajectories for the two-body Coulomb problem in a
uniform magnetic field. The parameters are taken from the chaotic case of a deuteron
(blue) and triton (red).

simulations. This prevents computation of the Lyapunov exponent since averaging over
a long simulation time is required, but it is still possible to construct a Poincaré section
by collecting points until the error becomes too large.

Poincaré sections are constructed by plotting (r,pr,pφ) when φ crosses a chosen value.
This is performed for a set of representative initial conditions. To further reduce the
dimensionality of the Poincaré section, the initial conditions are chosen to all have equal
energies. This restricts the Poincaré section to a two-dimensional surface of constant
energy. Chaotic solutions fill a region of the Poincaré section known as the chaotic sea,
while quasiperiodic solutions show up as closed curves.

The surface of constant energy for p-h is ellipsoidal, so it is possible to show the
Poincaré section as two projections on the r-pr plane. These projections are shown in
Fig. 2. The Poincaré section predominantly consists of a chaotic sea, with some islands
of quasiperiodicity.

The surface of constant energy has a more complicated topology for the cases of p-t
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Figure 2: Poincaré section for the two-body system of a helion and proton taken at φ =
π/2. The surface of constant energy can be conveniently separated into two projections
onto the r-pr plane.

Figure 3: The projected Poincaré section for the two-body system of a proton and triton
taken at φ = 0. The color of each point indicates the pφ position.
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Table 2: Parameters and initial conditions for chaotic cases
1 2 m q µ pθ ke [r, pr, φ, pφ]t=0 Remarks
h p 4 3 -1 1 1 [2.8, 0, 0, 0.9370] λ ≈ 0.0155
t p 4 2 -1 2 1 [0.4, 0, 0, 3.1109] λ ∼ 0.02
d t 5/3 2 1 3 1 [4.5, 0, 0, 4.8038] λ ≈ 0.0175
p̄ α 1.25 0.5 -0.5 1 3 [3.0, 0, 0, 1.4102] Numerically unstable

Figure 4: The projected Poincaré section for the two-body system of a deuteron and triton
taken at φ = π

2|µ| . The color of each point indicates the pφ position.

and d-t. In these cases, the projection of the Poincaré section onto the r-pr plane is taken,
and then a coloring scheme is used to represent the pφ value at each point. The resulting
Poincaré sections are shown in Fig. 3 and Fig. 4. The case of p-t has a phase space with
a roughly equal amount of chaotic and quasiperiodic regions, while the case of d-t almost
exclusively consists of a chaotic sea.

The Poincaré section for p̄-α is shown in Fig. 5. One notable difference from the other
cases is that the Poincaré section now extends to infinity in pr as r approaches zero. This
is due to the attractive Coulomb force, which allows the particles to come arbitrarily close
to each other.

No chaos was found for case of d̄-α. This is an interesting case because the gyrofre-
quencies sum to zero, so q1/m1 + q2/m2 = 0 or equivalently q = 2 − m. To answer the
question posed by Pinheiro and MacKay about what happens in this case, a search for
chaos in general cases with q = 2 − m was made. No cases that exhibited chaos were
found, which suggests that the solutions are all periodic or quasiperiodic.

An automated search algorithm was used to find chaotic solutions with m and q in
the interval [1, 2]. In each case, initial conditions were taken randomly from a Gaussian
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Figure 5: The projected Poincaré section for the two-body system of an antiproton and
alpha particle taken at φ = 0. The color of each point indicates the pφ position. Note
that as r → 0, pr → ∞.

Figure 6: A plot showing the regions where positive Lyapunov exponents were measured
by an automated search algorithm that varied m and q with random initial conditions.
These regions are indicated by darkened pixels. There is an observed lack of chaos along
the line q = m, which is an integrable case. Also, no chaos was found along the line
q = 2m − 1.
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distribution. A plot marking the locations where positive Lyapunov exponents were mea-
sured is shown in Fig. 6. There is a prominent lack of chaotic solutions on the line q = m,
where solutions are integrable [10]. There is also a visible lack of chaotic solutions on
the line q = 2m− 1, suggesting that those cases may also be integrable. However, points
nearby both of these lines are often chaotic, suggesting that these integrable solutions are
a set of measure zero.

4 Conclusion

The classical system of the two-body Coulomb problem in a uniform magnetic field was
investigated numerically in the restricted case of planar particles with an orthogonal
magnetic field. The goal was to determine under which conditions the system can exhibit
chaos. The analysis was done in a four-dimensional phase space with values of mass and
charge chosen to represent common physical particles.

Chaos was confirmed by computing a positive largest Lyapunov exponent and observ-
ing a chaotic sea in the Poincaré section. For the case of charges with equal signs, which
has been largely unexplored in the past, we found several new chaotic solutions. However,
these cases may be of limited physical interest since the charges would repel in the third
dimension if perturbed out of the plane. For the case of charges with opposite signs, the
largest Lyapunov exponent would not converge accurately due to numerical issues, but a
Poincaré section showed that chaos occurs in the antideuteron-alpha particle case. The
observation of chaos in this case is consistent with the analytical study of Pinheiro and
MacKay [10], and can possibly be studied in greater detail if collisions are regularized.
An automated search for chaotic solutions was performed for the problem where gyrofre-
quencies sum to zero, and no chaotic solutions were detected. Finally, the location of
chaotic solutions in the region 1 < m < 2 and 1 < q < 2 were studied. There were two
prominent regions with no chaotic solutions, along the lines q = m and q = 2m− 1. The
first of these is known to be integrable, but it is not clear why the second criterion would
preclude chaos. Future analytical study of this case could be interesting, but is outside
of the scope of the current paper.
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1 Introduction and preliminaries

Consider the following third order rational difference equation

xn+1 =
xn−1 + p

xn−2 + q
, n = 0, 1, · · · , (1)

where the parameters p, q are non-negative real numbers, and the initial conditions x−2, x−1, x0

are positive real numbers.
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For Eq. (1), M. R. S. Kulenovic and G. Ladas presented the following question:
Conjecture [3, P. 195] Assume that

p, q ∈ [0, ∞).

(a) Show that every positive solution of the equation

xn+1 =
xn−1 + p

xn−2 + q
, n = 0, 1, · · · ,

converges to a period-two solution if only and if q = 1.
(b) Show that when q > 1 the positive equilibrium of the equation is global asymptotical
stable.
(c) Show that when q < 1 the equation possesses positive unbounded solutions.

This question essentially is a conjecture for trichotomy of period two solution. Moti-
vated by this question, our main aim in this paper is to investigate the global behavior of
all positive solutions of Eq. (1).

The equilibrium point x̄ of Eq. (1) satisfies

x̄ =
x̄ + p

x̄ + q
,

i.e., x̄2 + (q − 1)x̄− p = 0. From this, one can see that Eq. (1) has a unique non-negative
equilibrium point

x̄ =
1 − q +

√
(1 − q)2 + 4p

2
. (2)

The linearized equation of Eq. (1) associated with this equilibrium is

yn+1 −
1

x̄ + q
yn−1 +

x̄

x̄ + q
yn−2 = 0 (3)

with the characteristic equation

λ3 −
1

x̄ + q
λ +

x̄

x̄ + q
= 0. (4)

For q = 1, the unique non-negative equilibrium point of Eq. (1) reads x̄ =
√

p. Eq.
(3) and Eq. (4) are respectively reduced into

yn+1 −
1

√
p + 1

yn−1 +

√
p

√
p + 1

yn−2 = 0 (5)

and

(λ + 1)[(λ −
1

2
)2 +

3
√

p − 1

4(
√

p + 1)
] = 0. (6)

Eq. (6) always has one real root λ1 = −1, which denotes a period two solution
yn = (−1)n of the linearized equation (5) and corresponds to a one dimensional local
center manifold W c

loc of Eq. (1).
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For p = 0, three roots of Eq. (6) are −1, 0, 1. The characteristic root λ = 0
corresponds to a one dimensional (1D) local stable manifold W s

loc of Eq. (1) whereas the
unit roots λ = ±1 correspond to a two dimensional (2D) local center manifold W c

loc of
Eq. (1).

When p ∈ (0, 1
9
], Eq. (6) has another two real roots

λ2,3 =
1

2
±

1

2

√
1 − 3

√
p

√
p + 1

with

|λ2,3| = |
1

2
±

1

2

√
1 −

√
3p

√
p + 1

| < 1.

For p ∈ (1
9
,∞), Eq. (6) has a pair of conjugate imaginary roots

λ2,3 =
1

2
±

1

2

√
3
√

p − 1
√

p + 1
i

satisfying

|λ2,3| = |
1

2
±

1

2

√ √
p

√
p + 1

i| =
1

2

√
1 +

√
p

√
p + 1

< 1.

So, for p ∈ (0,∞), Eq. (1) always has a 2D local stable manifold W s
loc.

There is always a point of view in engineers and physicians that the local stability of
an equilibrium point in a given system implies its global stability.

If this conjecture is true, then the point of view is partly verified. But, we now see
that this point of view is not always true.

Because every solution of Eq. (5) converges to either x̄ or period two solution, it is
natural to conjecture that every solution of Eq. (1) converges to a period two solution for
q = 1.

When the conjecture is true, the essential changes for the properties of solutions of
Eq. (1) will take place at q = 1. Namely, the bifurcation of Eq. (1) will occur at q = 1.
So, the parameter q = 1 is a critical point (or bifurcation point).

Generally speaking, given a difference equation

xn+1 = f(xn, µ), n = 0, 1, 2, · · · ,

where xn ∈ Rm, µ ∈ Rk, f ∈ C(Rm+k, Rm), m, k ∈ {1, 2, · · · } and the initial value
x0 ∈ Rm, its solution is a continuous function with respect to the initial value x0 and
the parameter µ, denoted by xn = x(n, x0, µ). If the change of the initial value x0 or the
parameter µ around a value leads to the essential change of the trajectory structure rule of
its solution, then it is implied that a bifurcation of this equation occurs. Correspondingly,
the critical value is called to be a bifurcation value. This is similar to the bifurcation of
ordinary differential equation.

Certainly, it should be pointed out that the essential change of the trajectory structure
rule of a difference equation contains many cases, such as, a solution or an invariant set
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changes its number, its stability, its boundedness, its period or the cycle length, etc.
Therefore, it is meaningful to investigate the bifurcation theory of difference equation
according to its own right.

The study of rational difference equation (for short, RDE) is quite challenging and
rewarding due to the fact that some results of RDEs offer prototypes for the development
of the basic theory of the global behavior of nonlinear difference equations; moreover, the
investigations of RDEs are still in its infancy so far. To see this, refer to the monographs
[1-4] and the papers [5-14] and the references cited therein. Especially, we solved an open
problem for the boundedness for the a generalized RDE in [13]; we obtained a result for
the global asymptotical stability of a kind of RDE. As a special case, our results solve a
conjecture for the global asymptotical stability of a RDE [14].

This rest of this paper is arranged as follows. The global asymptotical stability for
the positive equilibrium of Eq. (1) with q > 1 is shown in Section 2, which thoroughly
solves Conjecture (b).

The investigation for period-two solution of Eq. (1) is formulated in Section 3, partially
answering Conjecturer (a) and leaving a gap of p ∈ (0, 1) to readers. It is shown in Section
4 that this equation possesses positive unbounded solutions when q < 1, completely
solving Conjecture (c). Synthesizing these results, the center manifold for the equilibrium
of Eq. (1) and the analysis of bifurcation are stated in the final Section 5.

2 Global asymptotic stability of positive equilibrium

point

For the global asymptotical stability of positive equilibrium point of Eq. (1), one has the
following results.

Theorem 2.1 The positive equilibrium point of Eq. (1) is global asymptotical stable
for q > 1.

Proof For q > 1, the linearized equation of Eq. (1) associated with the positive
equilibrium (2) is

yn+1 −
1

x̄ + q
yn−1 +

x̄

x̄ + q
yn−2 = 0.

Obviously, | − 1
x̄+q

| + | x̄
x̄+q

| = 1+x̄
x̄+q

< 1. So, by [2, Remark 1.3.1, P. 13], the positive

equilibrium of Eq. (1) is locally asymptotically stable for q > 1.

Next, one will show the positive equilibrium of Eq. (1) is globally attractive for q > 1.
In view of Eq. (1), one can see

xn+1 <
1

q
xn−1 +

p

q
, n = 0, 1, · · · . (7)

Denote n = 2s + t, t ∈ {0, 1}, ys = x2s+t and r = 1
q
∈ (0, 1).

Then it follows from (7) that

ys+1 < rys + rp, s = 0, 1, · · · . (8)
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So, one further gets from (8)

ys+1 < rs+1y0 + rp + pr2 + pr3 + · · · + prs+1 = rs+1y0 + p
r − rm

1 − r
< y0 +

pr

1 − r
,

which indicates that ys possesses upper bound, say, R = y0 + pr

1−r
. And hence so does

{xn}. Accordingly, from Eq. (1), xn+1 > p

R+q
, namely, {xn} has lower bound.

Therefore,

lim
n→∞

infxn = L and lim
n→∞

supxn = M

exist and are finite.
Moreover,

0 < L ≤ x̄ ≤ M < ∞.

It is clear from Eq. (1) that

L ≥
L + p

M + q
, M ≤

M + p

L + q
.

So, LM + Lq ≥ L + p and ML + Mq ≤ M + p, which implies (1 − q)M + p ≥ ML ≥
(1 − q)L + p. Therefore, M ≤ L. Again, M ≥ L. Hence M = L. That is to say,
limn→∞ xn = x̄. The proof is complete.

3 Existence of period two solution

In this section one will consider the behavior for prime period two solutions of Eq. (1).
The following lemma will be needed [4, P. 12].

Lemma 3.1 Let F ∈ C[Ik, I] for some interval I of positive real numbers and for some
natural number k. Then every positive solution of the equation

xn = F (xn−1, · · · , xn−k), n = 0, 1, · · ·

has a limit in I if the following statements are true:
(1) F (z1, · · · , zk) is nondecreasing in each of its arguments;
(2) F (z1, · · · , zk) is strictly increasing in each of the arguments zi1 , · · · , zie , where
i1, · · · , ie are relatively prime;
(3) F (c, c, · · · , c) = c for every c ∈ I.

One has the following result.
Theorem 3.2 (1) If every positive solution of Eq. (1) converges to a period two

solution, then q = 1.
(2) If q = 1, moreover, p ∈ {0}∪[1,∞), then every positive solution of Eq. (1) converges
to a period two solution.

Proof (1) If every positive solution {xn}
∞

n=−2 of Eq. (1) converges to a period two
solution · · · , α, β, α, β, α, · · · , then

α =
α + p

β + q
, β =

β + p

α + q
.
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Namely, {
αβ + qα = α + p,
αβ + qβ = β + p.

(9)

Subtracting each other in the above system yields q(α − β) = α − β. Notice that α �= β.
So, q = 1.
(2) Assume q = 1. First consider the case p = 0. Then Eq. (1) reads

xn+1 =
xn−1

xn−2 + 1
< xn−1, n = 0, 1, 2, · · · . (10)

Set n = 2s + t, ys = x2s+t, t ∈ {0, 1}. Then (10) implies 0 < ys+1 < ys. Therefore,
lims→∞ ys exists, which implies that both {x2s}and {x2s+1} converge. Denote

lim
n→∞

x2n = α, lim
n→∞

x2n+1 = β.

Letting n in Eq. (1) be changed into 2n and 2n + 1 respectively and then respectively
taking the limits on both sides of Eq. (1) yield

α =
α + p

β + q
, β =

β + p

α + q
.

So, · · · , α, β, α, β, · · · is a period two solution of Eq. (1). Accordingly, {xn} converges to
a period two solution (not necessarily prime).

Then consider the case p ∈ [1, ∞). From Eq. (1), one has xn = xn−2+p

xn−3+1
and so

xn−5 = xn−4+p

xn−2
− 1. Thus,

xn+2 =
xn + p

xn−1 + 1
=

xn + p
xn−3+p

xn−4+1
+ 1

=
xn + p

xn−5+p

xn−6+1
+p

xn−4+1
+ 1

=
xn + p

xn−4+p

xn−2
−1+p

xn−6+1
+p

xn−4+1
+ 1

. (11)

Put n = 2s+ t, t ∈ {0, 1} and ys = x2s+t, s = −1, 0, · · · .. Then, from (11), one can see

ys+1 =
ys + p

ys−2+p

ys−1
−1+p

ys−3+1
+p

ys−2+1
+ 1

� H(ys, ys−1, ys−2, ys−3), s = 2, 3, · · · . (12)

Evidently, H is increasing with respect to ys, ys−1, and ys−3. Furthermore, H(x, x, x, x) =
x for any x ∈ (0,∞).

Next one will show that H is increasing in ys−2. Denote

h(x) =

x+p

y
−1+p

z+1
+ p

x + 1
, x, y, z ∈ (0, ∞).

Then h
′

(x) = (1−p)(1+y)−py(z+1)
y(z+1)(x+1)2

< 0 for p ≥ 1. That is to say, h(x) is decreasing in x.
Thereout, H is increasing with respect to yn−2 for p ≥ 1. Hence, it follows from Lemma
3.1 that every solution {ys}

∞

s=−1 has a limit and so {x2s}
∞

s=0 and {x2s+1}
∞

s=−1 converge,
which indicates that {xn} converges to a period two solution for q = 1 and p ≥ 1. The
proof is complete.

Remark 3.3. If it can be proved that every positive solution of Eq. (1) converges
to a period two solution for p = 1 and q ∈ (0, 1), then Conjecture (a) will be completely
shown. Unfortunately, up to now, this is still an open problem.
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4 Existence of unbounded solution

In this section one will investigate the existence of unbounded solutions of Eq. (1) for
q < 1. The following results are derived.

Theorem 4.1 There exist unbounded solutions of Eq. (1) for q < 1.
Proof Consider two cases.

Case 1: p > 0. Choose the initial values x0, x−2 ∈ (0, 1 − q), x−1 ≥ p

x0
+ 1 − q, which

implies x0+p

x−1+q
≤ x0. From xn+1 = xn−1+p

xn−2+q
, n = 0, 1, 2, · · · , one has

x1 =
x−1 + p

x−2 + q
> x−1 + p, x2 =

x0 + p

x−1 + q
≤ x0,

x3 =
x1 + p

x0 + q
> x1 + p > x−1 + 2p, x4 =

x2 + p

x3 + q
<

x0 + p

x1 + q
< x0,

x5 =
x3 + p

x2 + q
≥

x3 + p

x0 + q
> x3 + p > x−1 + 3p, x6 =

x4 + p

x3 + q
<

x0 + p

x1 + q
< x0.

So, inductively, one gets

x2n+1 > x−1 + (n + 1)p, x2n < x0, n = 0, 1, · · · .

Therefore, limn→∞x2n+1 = ∞, i.e., {xn} is unbounded.
Case 2: p = 0. Then by choosing the initial values x0, x−1, x−2 ∈ (0,∞) such that
0 < x0 < x−2 < 1 − q, x−1 > 1 − q, one has

x1 =
x−1

x−2 + q
> x−1, x2 =

x0

x−1 + q
< x0,

x3 =
x1

x0 + q
>

x1

x−2 + q
= (

1

x−2 + q
)2x−1, x4 =

x2

x1 + q
<

x0

x−1 + q
< x0,

x5 =
x3

x2 + q
>

x3

x−2 + q
> (

1

x−2 + q
)3x−1, x6 =

x4

x3 + q
<

x0

x−1 + q
< x0.

It follows by induction that x2n+1 > ( 1
x−2+q

)nx−1 and so limn→∞x2n+1 = ∞, which

implies that {xn} is also unbounded. The proof is over.

5 Analysis of bifurcation

After the above preparations, one will begin to formulate some results for the center
manifold of the equilibrium of Eq. (1) and analyze the bifurcation case of Eq. (1).

First, one may transform Eq. (1) to an equivalent system. Let un = xn−2, vn =
xn−1, wn = xn, and zn = (un, vn, wn)T . Then Eq. (1) is equivalent to the following
system: zn+1 = F (zn), i.e., ⎧⎨

⎩
un+1 = vn,
vn+1 = wn,
wn+1 = vn+p

un+q
.

(13)
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The equilibrium point z̄ = (u, v, w) of the system (13) satisfies

u = v = w = x̄ =
1 − q +

√
(1 − q)2 + 4p

2
.

The Jaccobian matrix of F at the equilibrium point z̄ has the form

DF (z̄) =

⎛
⎝ o 1 0

o 0 1
− v+p

(u+q)2
1

u+q
0

⎞
⎠

with the characteristic equation evaluated at the equilibrium point z̄

λ3 −
1

x̄ + q
λ +

x̄

x̄ + q
= 0, (14)

which is the same as (4).
The following results may be derived.
Theorem 5.1 Consider the first order 3D system (13). Then the following statements

are true.
1. Suppose q = 1. If p = 0, then the equilibrium point z̄ of the system (13) is a center
with a 1D local stable manifold and a 2D local center manifold; If p > 0, there always
is a 2D local stable manifold and a 1D local center manifold at the neighborhood of
equilibrium point z̄; the latter is a segment of curve L consisting of z̄ and the total period
two solutions of F , where L = {(u, v, w) ∈ (R+)3|uv = p, u = w}, and it is globally
asymptotically stable, i.e., the other solutions of (13) regard L as a limit set.
2. For q > 1, the equilibrium point z̄ of the system (13) is a stable one. There is a
3D stable manifold at the neighborhood of the equilibrium point z̄. Namely, the center
manifold (2D for p = 0 and 1D for p > 0) which occurs for q = 1 disappears and turns
also into a stable manifold (2D for p = 0 and 1D for p > 0).
3. For q < 1, the center manifold becomes an unstable manifold. At this time, except
for the orbit zn = z̄ in L, all other orbits on L will tend to infinity along the L.

Proof It is easy to see that the first order 3D system (13) has a unique equilibrium
point z̄.

1. For q = 1, according to the analysis in the introduction in this paper, the charac-
teristic equation (14) of the system (13) has one root λ1 = −1. When p = 0, the other
two roots of (14) is 0, 1. The characteristic root 0 corresponds a 1D local stable manifold
of the equilibrium point z̄ of the system (13), and the characteristic roots ±1 correspond
a 2D local center manifold of the equilibrium point z̄. When p ∈ (0, 1

9
], the equation (14)

has two other real roots

λ2,3 =
1

2
±

1

2

√
1 − 3

√
p

√
p + 1

with |λ2,3| < 1. When p ∈ (1
9
,∞), the equation (14) has a pair of conjugate imaginary

roots

λ2,3 =
1

2
±

1

2

√
3
√

p − 1
√

p + 1
i
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satisfying

|λ2,3| = |
1

2
±

1

2

√ √
p

√
p + 1

i| =
1

2

√
1 +

√
p

√
p + 1

< 1.

Hence, it is always true that |λ2,3| < 1 for p ∈ (0,∞), which, together with λ1 = −1,
reads the existence of a 2D local stable manifold and a 1D local center manifold at the
neighborhood of equilibrium point z̄. The expression of L can be obtained from zn+2 = zn.

2. For q > 1, the previous Theorem 2.1 tells us the equilibrium point z̄ of the system
(13) is globally asymptotically stable regardless of p = 0 or p > 0. This indicates that
there is a 3D stable manifold at the neighborhood of the equilibrium point z̄. Therefore,
the 2D center manifold which occurs for p = 0 and q = 1 disappears and turns into a 2D
stable manifold and the 1D center manifold occurring for p > 0 and q = 1 disappears and
becomes a 1D stable manifold.

3. The correctness follows from Theorem 4.1 stated previously in this paper.
Remark 5.2. It is easily observed that the equilibrium point z̄ of the system (13)

loses one dimension in the center manifold and gains one dimension in the stable one when
p = 1 and q crosses the null value. Namely, the dimensional number of center manifold
of the equilibrium point z̄ of the system (13) varies from 2 to 1. This kind of change for
the dimensional number of center manifold of the equilibrium point z̄ as the parameter
p crosses the null value possibly implies a new mechanism for the creation of bifurcation,
which deserves to one’s further investigations.

6 Stability of period two solution

The existence of period two solution has been considered for q = 1 in above Section 3.
When every solution of Eq. (1) converges to a period two solution, how about the stability
of the period two solution? We now answer this question.

A period two solution of Eq. (1) or system (13) is a fixed point of F 2(z) = F (F (z)) = z
with

F 2(z) = F (F (z)) =

⎛
⎝ w

v+p

u+q
w+p

v+q

⎞
⎠ for z =

⎛
⎝ u

v
w

⎞
⎠ .

The Jaccobian matrix of F 2 has the form

DF 2(z) =

⎛
⎝ 0 0 1

− v+p

(u+q)2
1

u+q
0

0 − w+p

(v+q)2
1

v+q

⎞
⎠

with the characteristic equation evaluated at the period two solution z

λ3 − (
1

u + q
+

1

v + q
)λ2 +

λ

(u + q)(v + q)
−

w + p

(u + q)2(v + q)
= 0. (15)

By Theorem 3.2 and Theorem 5.1, one can see that there exist period two solutions of Eq.
(1) or system (13) only when q = 1 and that the period two solution zT = (u, v, w) ∈ (R+)3
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satisfies uv = p and w = u. Hence, Eq. (15) can be reduced to

λ3 − (
1

u + 1
+

u

u + p
)λ2 +

u

(u + 1)(u + p)
λ −

up

(u + 1)(u + p)
= 0, (16)

where u > 0 is a parameter.
Theorem 6.1 Any one period two solution of Eq. (1) with q = 1 is unstable.
To prove this conclusion, the following lemma is needed [3, P. 46].
Lemma 6.2 For the equation λ3 + aλ2 + bλ + c = 0 with real coefficients a, b, c, all

roots lie inside the unit disk |λ| < 1 if and only if |a + c| < 1 + b, |a − 3c| < 3 − b and
b + c2 < 1 + ac.

Proof of Theorem 6.1 Corresponding to (16), the condition

|a + c| < 1 + b ⇔
1

u + 1
+

u

u + p
+

up

(u + 1)(u + p)
< 1 +

u

(u + 1)(u + p)

⇔ u + p + u(u + 1) + up < (u + 1)(u + p) + u

⇔ 0 < 0.

This is impossible. Hence, there exist at least one root of Eq. (16) not to lie inside the
unit disk |t| < 1. Thus, Any one period two solution of Eq. (1) with q = 1 is unstable.
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Abstract

When, more than two years ago, Prof. Zeroualia Elhadj informed me of his

willing to write a book on what is known as “Lozi map” since the Misiurewicz’s

communication in the congress organized by the New York Academy of Science,

17-21 December 1979, I warned the task was not straightforward because hundreds

of articles were published on this topic in thirty years. These papers were scattered

in various fields of research, not only in mathematics (dynamical systems), but in

physics, computer science, electronics, chemistry, control science and engineering,

etc.
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Nevertheless, he eventually collected and scrutinized more than one thousand papers
before completing this outstanding book ”Lozi Mappings: Theory and Applications”. The
outcome of his enquiry is tremendous. Every aspect of the mathematical properties of
this map of the plane (and its generalizations) is analyzed. The results are classified and
systematized. Moreover, in order to make easy the comprehension for a fresh reader, the
book begins with a comprehensive review of hyperbolicity, ergodicity and chaos. Once
the background is clearly posed the reality of chaos in the Hénon mappings is examined,
after that the survey on Lozi mappings begins.

Responding to the kind invitation of Prof. Zeroualia Elhadj to write an introduction,
I take the opportunity to introduce some personal views not only on the matter of chaotic
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Figure 1: The initial area a maped by T ′ into b, then by T ′′ into c, and finally by T ′′′ into
d.

systems, but also on the current evolution of mathematics and some aspects of the live of
one researcher in mathematics.

In the human life it is not so easy to recall a particular day. Thirty five years after the
pinpoint moment I had the idea to substitute the quadratic term in the Hénon map by
an absolute value I can remember the exact date because it took place during the talk of
the presentation of the thesis of A. Intissar on June 15th 1977 around 11 a.m (I checked
recently the date). In these days the department of mathematics of the university of Nice
(later called university of Nice-Sophia Antipolis) was a small community and every one
attended the presentation of each Ph.D. thesis. Hence I was not very concerned by the
talk and contrarily I was thinking thoroughly to the strange structure of the Hénon map
that my colleague Gérard Iooss told me about, few days before, during the ”International
Conference on Mathematical Problems in Theoretical Physics” that took place at the
university of Roma, Italy (June 6-15), we partially attended together. The opening talk
of this conference given by David Ruelle (Dynamical Systems and Turbulent Behavior)
emphasized the importance of such a simple discrete model in the study of turbulence
(this is not recognized today). At that time I occupied the position of “Attaché de
Recherches” at C.N.R.S. (Centre National de la Recherche Scientifique) after my Ph.
D. thesis on numerical analysis of bifurcation problems (the first thesis on bifurcation
theory in France, presented on April 25th, 1975). I was mainly interested in discretization
problems and finite element methods, in which nonlinear function are approximated by
piecewise linear ones. I tried to apply my background to the quadratic map introduced
by Michel Hénon few months ago, in order to obtain a better amenable map for analytical
treatment. In Figure 1 of his publication (reproduced here) there is a clear explanation
of the folding and stretching process which led him to the formula of the map.

The area b on the Figure is bounded by two parabolas generated by the formula:
T ′ : x′ = x, y′ = y + 1 − ax2 applied to the initial area a. Drawing on a paper sheet
the shape of this area, I embedded it in another area bounded by four line segments
which eventually reminded me the graph of the absolute value function. I substituted
then L′ : x′ = x, y′ = y + 1 − a |x| to T ′. Soon after the end of the presentation I
went to my office situated on the upper floor of the seminar room to test the idea on
the Hewlett-Packard 9820 calculator linked to the HP 9862 plotter I used to promote
computer science for teachers in the classroom at the Institute of Research in Educational
Mathematics (I.R.E.M). Even if the parameter value giving the ”classical” Hénon strange
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attractor (i.e., a = 1.4, b = 0.3) provides also a strange attractor for this new mappings,
after few tests I shifted it to a = 1.7, b = 0.5 in order to obtain a more striking picture
of the strange attractor studied in this book. Back to the lunch which celebrated the
completion of the thesis I showed the figure to Gérard Iooss and also to Alain Chenciner
who encouraged me latter to publish the formula, (the genuine article comes from the
presentation I gave during a conference on dynamical systems in July 1977 in Nice).
In the following days I was convinced that few weeks would be enough to explain the
structure of such an attractor basically composed of line segments. But the task proved
more difficult than expected (mainly because contrary to as Michal Misiurewicz did, I
did not limited the extend of the parameter value for the study). In the next years I
attended two meetings on iteration theory: the first one on May 21-23, 1979 at La Garde
Freinet (a small town in the south of France) where Michel Hénon was also present and
where Michal Misiurewicz, after some questions at the end of my talk (the purpose of
which was the computation of homoclinic points of the map), came to the blackboard to
give to the assistance some clues of the forthcoming result of the New York meeting. The
second meeting is a summer school in physics on July 1979 in Cargèse (Corsica) in the
proceedings of which I eventually published the article entitled: “Strange attractors: a
class of mappings of R

2 which leaves some Cantor Set invariant”. In this paper I used the
genuine non differentiable map in order to prove the existence of one homoclinic point for
a smooth version of the Lozi map and then applying a theorem of Stephen Smale I proved
the existence of an invariant Cantor set. After that, took place the congress organized by
the New-York Academy of Science where I am proud I shook the hand of Edward Lorenz,
the father of strange attractors and I listen with a mix of anxiety and curiosity the first
proof of existence of a strange attractor for an analytically given map of the plane. After
the Misiurewicz’s work, hundreds of papers were published on countless aspects of this
strange attractor as it is cleverly showed in this book.

Now, if we go back in thought in the late 70’s, in some aspects, life was very different
than nowadays. There was no personal computer (M. Hénon used one of the only two
computers of the university of Nice, a IBM 7040, in order to plot the figure of his original
paper), no Internet, no wireless phone. Also, communications between researchers were
done through slow post office mail, travels by air were very expensive, limiting personal
contact between researchers in the west countries. Moreover, the Berlin’s wall was still
standing. James Yorke which coined the term of chaos in his famous paper with his
student Tien-Yien Li “Period three implies Chaos” in 1975 was unaware of Alexander
Sharkovkii’s theorem published in Russian in 1964 displaying more penetrating results on
periodic orbits (however essential notion as sensitive dependence on initial conditions is
only introduced in the paper of Li and Yorke). The technical progress in thirty years is
dramatic in every aspect of all the days life. In contrast, mathematics is progressing very
slowly. Near my entire professional life of mathematician has been needed to see published
results I expected proved in few months. News results as for example: “topological entropy
for the Lozi maps can jump from zero to a value above 0.1203 as one crosses a particular
parameter and hence it is not upper semi-continuous in general” (I. B. Yildiz), or: “certain
Lozi-like maps have the orbit-shifted shadowing property” (A. Sakurai) are continuously
published every year.

A tentative title first chosen to the book by Prof. Elhadj Zeraoulia: “the power of
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chaos” reflects a part of what one can observe in numerous publications of last years.
If on one hand new theoretical important results are still regularly found as said above,
on the other hand applications of Lozi map are soaring, in engineering, computers, com-
munications, control, medicine and biology and especially in the domain of evolutionary
algorithms. In the last chapter of the book, due to the limitation of the number of pages,
only some real-world applications are given. However, they allow the reader to get an
idea of the power that holds the mastery of chaos generated by the Lozi mappings.

In the scope of evolutionary algorithms the use of chaotic sequences instead of random
ones has been introduced ten years ago by Caponetto, et al. Several traditional chaotic
maps in 1 or 2-dimensions are used. The difference among them is based on the two
main differences: the shape of the invariant measure and the robustness with respect to
numerical computation. Lozi map is recognized to show better performance due to his
shadowing property. These algorithms are particularly efficient in global optimization
problems. Since 1975, when I was a young assistant professor, I had a disappointed
passion for years in the search of classical algorithm for solving such problems. What is
funny nowadays is to notice how a map I introduced for an entire different aim is routinely
used now to solve this problem.

Finally thanks to the work of Prof. Elhadj Zeroualia, I can go back and look at how
a very small idea has blossomed into an area that still fascinates me: mathematics.


