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Abstract

We analyse the emergent dynamics of the so called majority voter model evolving
on complex networks. In particular we study the influence of three characteristic
types of networks, namely Random Regular, Erdös-Rényi (ER), Watts and Strogatz
(WS, small-world) and Barabasi (scale- free) on the bifurcating stationary coarse-
grained solutions. We first prove analytically some simple properties about the
symmetry and symmetry breaking of the macroscopic dynamics with respect to the
network topology. We also show how one can exploit the Equation-free framework to
bridge in a computational strict manner the micro to macro scales of the dynamics of
stochastic individualistic models on complex random graphs. In particular, we show
how systems-level tasks such as bifurcation analysis of the coarse-grained dynamics
can be performed bypassing the need to extract macroscopic models in a closed
form. A comparison with the mean-field approximations is also given illustrating the
merits of the Equation-Free approach, especially in the case of scale-free networks
exhibiting a heavy-tailed connectivity distribution.
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1 Introduction

Social-like mimetic behavior - otherwise described as trend following or majority-voter or
majority-rule- has been, over the last century, a key factor in determining and shaping
economical and political changes around the world [20, 45, 23]. Taking as an example
decision making, it has been demonstrated that the mimetic behavior of individuals may
significantly affect rational decisions under incomplete information [39, 37, 49, 16]. Iden-
tifying and understanding collective actions from such phenomena has therefore been an
important research task for psychologists, sociologists and economists. Over the years,
scientists have extensively used this mechanism to model and gain a better understanding
on the behavior of opinion formation and voter/election dynamics [8, 19, 48, 7, 32, 33]
culture and language dynamics [11, 3, 6, 10, 35], crowd flow design and management
[18, 21, 17, 40], diffusion of news and innovations [15, 34, 51],but also epidemic spread
dynamics [5, 4, 13, 28, 27, 42] ecology [24] and neuroscience [31, 46, 47]. Given the nature
of the process, it is clear that the network topology, on which the interaction of the indi-
viduals evolves, can shape the emergent macroscopic dynamics. However, it is less clear
how one can quantify in a systematic manner the dependence of the emergent dynamics
with respect to both network characteristics and model parameters. Due to the nonlinear,
stochastic nature of such models and their coupling to complex network structures, the
emergent behavior cannot be-most of the times-accurately modeled and analyzed in a
straightforward manner.

While one can try to use the tools of statistical physics to write down coarse-grained
master equations to describe the probabilistic time evolution of the macroscopic quantities
for simple-structured homogeneous networks (in the sense that there is a constant degree
connectivity and/or that the structure is poorly clustered), major problems arise in trying
to find fair- or perform computations based on- macroscopic models in a closed form
when dealing with complex heterogeneous networks (such as scale-free type of networks)
[50, 1, 38]. This imposes a major obstacle to systems-level computational tasks, such
as bifurcation and stability analysis which rely on the availability of efficient low-order
closed models written in terms of a few macroscopic (coarse-grained) variables. Hence,
being able to systematically analyze the dynamics of majority-voter processes on complex
networks becomes, in this context, of great importance.

Here, our main focus is to systematically explore the dynamics of the basic majority-
voter process deploying on complex networks. We first prove analytically some symmetry
properties of the corresponding mean field models. We then show how the network struc-
ture induces symmetry breaking of the system solutions giving rise to hysteresis phenom-
ena. Asymmetric behavior predicted by detailed network models has been observed in
many real-world complex problems. In particular, symmetry breaking of majority-voter
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processes has been related to phenomena such as herd behavior under panic [2], the emer-
gence of cooperation dynamics [41] and public opinion formation [22]. Finally, in order
to systematically analyse the way symmetry breaking influences the emergent dynamics
we exploit the Equation-Free framework [29, 14, 44, 36] bypassing the construction of
explicit coarse-grained models. In particular, we construct the coarse-grained bifurcation
diagrams and perform a stability analysis of the basic majority-rule dynamics evolving on
complex networks, with respect to (a) model’s switching-state probability and (b) to the
underlying degree distribution. We should note that this is the first time that such an
analysis is provided using the detailed stochastic model in an explicit manner, i.e. bypass-
ing the need to construct mean-field approximations. A comparison with the mean field
approximations is also demonstrated, to reveal the merits of the proposed framework. In
particular in the case of scale-free structures even if one manages to extract exact mean
filed approximations, we show that bifurcation analysis, based on the corresponding an-
alytical mean field approximation, appears to be an overwhelming difficult task, due to
the heavy tail power-law connectivity distribution.

The paper is organized as follows. In section 2 we describe the majority-voter model
deploying on a network while in section 3 we prove analytically how the connectivity de-
gree of random graphs governs the symmetry and the symmetry breaking of the solutions
of the corresponding mean field models. In section 4 we derive the mean field approxima-
tion of the majority-voter model in the case of complex networks with arbitrary degree
distributions. In section 5, we show how the Equation-free framework can be exploited
to perform systems level tasks on complex networks. In section 6 we present the results
of the coarse-grained numerical analysis, constructing the coarse-grained bifurcation dia-
grams of the majority-voter dynamics as these obtained by exploiting the Equation-free
approach on complex networks. A comparison with the bifurcation diagrams obtained
using the mean field approximations is also made. We conclude in section 7.

2 The discrete stochastic majority-voter model

In our simple basic majority-voter model [31, 46, 47], each individual is labeled as i,
(i=1,2,...,N ), which votes for “A” or “B”. Hence, the state of the i-th individual in time
is described with the function ai(t) ∈ {0, 1}, where the values 1 and 0 corresponds to “A”
and “B” selection respectively. Let us denote by Λ(i) the set of the neighbors (i.e. the
individuals connected to i-th individual, with self loop included). The summation

σi(t) =
∑

j∈Λ(i)

ai(t) (1)

gives the number of individuals socially linked with the i -th individual voting for “A”.
At each time step each individual is influenced by its social interactions, and changes its
preference according to the following simple stochastic rules:

1. A “B” voter changes its preferences to “A” with probability ε, if σi(t) ≤
(

ki

2

)
(where

ki is the degree of the i − th individual). If σi(t) >
(

ki

2

)
the individual keeps changes its

preferences to “A” with probability 1 − ε.
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Figure 1: An example of the majority-voter rules. The open circle represents a “B” voter,
while the filled circle represents an “A” voter (a). pB→A = 1−ε, since σ(t) =

∑10
j=1 aj(t) =

6 > degree(i)/2. Here degree(i)=10 (self loop is included). (b) Similar, pA→B = 1 − ε,
since σ(t) =

∑6
j=1 aj(t) = 2 < degree(i)/2.

2. An individual with a preference “A” changes its preference to “B” with probability
ε, if σi(t) >

(
ki

2

)
. If σi(t) ≤

(
ki

2

)
, the individual changes its preference to B with proba-

bility 1− ε. The probability ε ranges in (0, 0.5). We illustrate the operation of the above
rules in Fig. 1.

3 Symmetry and symmetry breaking of the solutions

of the mean-field majority-voter model evolving on

random regular networks (RRN)

In the following section we prove some simple but important properties of the majority-
voter dynamics evolving on random regular networks.

3.1 RRN with an odd connectivity distribution

For our analysis we start by considering a random network with constant, odd, connec-
tivity degree: k = 2l−1 and l ∈ N (self loop is included). In this case, the time evolution
of the density of A voters is given by the equation

dt+1 = f2l−1(dt) (2)

where the function f2l−1 takes the form

f2l−1(d, ε) = (1 − ε)(

(
2l − 1

0

)
d2l−1 +

(
2l − 1

1

)
d2l(1 − d) + ... +

(
2l − 1

l − 1

)
dl(1 − d)l−1)+

+ ε(

(
2l − 1

l

)
dl−1(1 − d)l +

(
2l − 1

l + 1

)
dl−2(1 − d)l+1 + ... +

(
2l − 1

2l − 1

)
(1 − d)2l−1)

(3)

In this case, the following proposition holds:
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Proposition 3.1.1. Let (G, E) be a network with constant odd connectivity k = 2l − 1,
l ∈ N . Then the fixed point solutions of equation (2) for a constant ε are symmetric with
respect to d = 1/2.

Proof. We shall prove that if d0 is a solution of Eq. (2), then 1 − d0 is also a solution.
The function f2l−1, Eq. (3) can be written in a more compact form

f2l−1(d, ε) = (1 − ε)
l−1∑
i=0

(
2l − 1

i

)
d2l−1−i(1 − d)i + ε

2l−1∑
i=l

d2l−1−i(1 − d)i (4)

Eq. (4) can be put in the following form

f2l−1(d, ε) = (1 − ε)f1,2l−1(d) + εf2,2l−1(d) (5)

where

f1,2l−1(d) =

l−1∑
i=0

(
2l − 1

i

)
d2l−1−i(1 − d)i (6)

and

f2,2l−1 =
2l−1∑
i=l

(
2l − 1

i

)
d2l−1−i(1 − d)i. (7)

The fixed point solutions of Eq. (2) are derived from

d = f2l−1(d, ε) ⇔ d − f2l−1(d, ε) = 0 ⇔ G2l−1(d, ε) = 0 (8)

and
G2l−1(d, ε) = d − f2l−1(d, ε) (9)

Any solution d0 of Eq. (8)satisfies

d0 = f2l−1(d0, ε) ⇔ d0 = (1 − ε)f1,2l−1(d0) + εf1,2l−1(d0) (10)

Remark 3.1.2. f1,2l−1(1 − d) = f2,2l−1(d) and f2,2l−1(1 − d) = f1,2l−1(d)

Proof.

f1,2l−1(1 − d) =
l−1∑
i=0

(
2l − 1

i

)
(1 − d)2l−1−idi =

(
2l − 1

0

)
(1 − d)2l−1

+

(
2l − 1

1

)
(1 − d)2l−1−1d + ... +

(
2l − 1

l − 1

)
(1 − d)ldl−1

It is known that
(

n

k

)
=

(
n

n−k

)
for 0 ≤ k ≤ n hence

f1,2l−1(1 − d) =

(
2l − 1

2l − 1

)
(1 − d)2l−1 +

(
2l − 1

2l − 2

)
(1 − d)2l−2d+

... +

(
2l − 1

l

)
(1 − d)ldl−1 =

2l−1∑
i=l

(
2l − 1

i

)
d2l−1−i(1 − d)i

= f2,2l−1(d)



6 K. G. Spiliotis, C. I. Siettos and L. Russo

Remark 3.1.3. f1,2l−1(d) + f2,2l−1(d) = 1

Proof.

f1,2l−1(d) + f2,2l−1(d) =
l−1∑
i=0

(
2l − 1

i

)
d2l−1−i(1 − d)i +

2l−1∑
i=l

(
2l − 1

i

)
d2l−1−i(1 − d)i

=

2l−1∑
i=0

(
2l − 1

i

)
d2l−1−i(1 − d)i = (d + 1 − d)2l−1 = 12l−1 = 1 (11)

Putting in the expression of G, Eq. (8), d0 → 1 − d0 we get

G2l−1(1−d0, ε) = 1−d0−f2l−1(1−d0, ε) = 1−d0−(1−ε)f1,2l−1(1−d0)−εf2,2l−1(1−d0) (12)

Substituting the expression of d0 from Eq. (10) in Eq. (12) we get

G2l−1(1 − d0, ε) = 1 − (1 − ε)f1,2l−1(d0) − εf2,2l−1(d0)−

(1 − ε)f1,2l−1(1 − d0) − εf2,2l−1(1 − d0)

(13)

and by remark 3.1.2

G2l−1(d0, ε) = 1 − (1 − ε)f1,2l−1(d0) − εf2,2l−1(d0)−

(1 − ε)f2,2l−1(d0) − εf1,2l−1(d0) = 1 − (f1,2l−1(d0) + f2,2l−1(d0)) = 1 − 1 = 0

Proposition 3.1.4. For each ε, and for constant odd connectivity there is always the
solution d0 = 1

2
.

Proof.

G2l−1(
1

2
, ε) =

1

2
− f2l−1(

1

2
, ε) =

1

2
− (1 − ε)f1,2l−1(

1

2
) − εf2,2l−1(

1

2
) (14)

from remark 3.1.2, putting d = 1
2

we get that

f1,2l−1(
1

2
) = f2,2l−1(

1

2
) (15)

therefore

G2l−1(
1

2
, ε) =

1

2
− (1 − ε + ε)f1,2l−1(

1

2
)

=
1

2
− f1,2l−1(

1

2
) =

1

2
−

l−1∑
i=0

(
2l − 1

i

)
1

2

2l−1−i

(
1

2
)i =

=
1

2
−

l−1∑
i=0

(
2l − 1

i

)
(
1

2
)2l−1 =

1

2
− (

1

2
)2l−1

l−1∑
i=0

(
2l − 1

i

)
=

=
1

2
− (

1

2
)2l−122l−2 =

1

2
−

1

2
= 0 (16)
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Figure 2: Bifurcation diagram of the density of “A” voters with respect to the switching
probability ε, as constructed using the mean field approximation of the majority-voter
dynamics evolving one a RRN with a constant degree distribution equal to 5 (as produced
using Eq. (8)).

Fig. 2 gives the bifurcation diagram for a random network with constant connectivity
degree equal to 5 (self loop is included), resulting from Eq. 8. Clearly there are two
branches of symmetric solutions around the steady solution d0 = 1

2
.

Now suppose that the network has a degree distribution P (k) containing only odd
degrees. Specifically, let us assume that the network has N1 nodes with a degree equal
to 2l1 − 1, N2 nodes with a degree equal to 2l2 − 1,..., Nk nodes with degree equal to
2lk − 1, (N1 + N2 + ... + Nk = N and li ∈ N, i = 1, 2, ...k) . The time evolution of the
density can be split into sums of conditional probabilities of specific degrees:

dt+1 = ftot(dt, ε) (17)

and

ftot(dt, ε) =

k∑
i=1

f2li−1(d, ε)P (2li − 1) (18)

The fixed point solution of Eq. (17) is

d = ftot(d, ε) ⇔ d − ftot(d, ε) = 0 ⇔ Gtot(d, ε) = 0 (19)

Now we will prove the following

Proposition 3.1.5. Let (G, E) be a network with a degree distribution containing only
odd dergees Then the fixed point equation, Eq. (19), for a constant ε, has symmetric
solutions with respect to d = 1/2.

Proof. Suppose that d0 is a solution of Eq. 19. Then

d0 =

k∑
i=1

f2li−1(d0, ε)P (2li − 1) (20)
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From the proof of proposition 3.1.1 we have that for each i, (i = 1, 2, ..., k) the function
f2li−1 can be written as a convex combination of two other functions f1,2li−1 and f2,2li−1

(Eq. 5) i.e.

f2li−1(d, ε) = (1 − ε)f1,2li−1(d) + εf2,2li−1(d) (21)

By remark 3.1.2 we have

f1,2li−1(1 − d) = f2,2li−1(d) (22)

and

f2,2li−1(1 − d) = f1,2li−1(d) (23)

Now we set d0 → 1 − d0 in the function Gtot Eq. (19) to get

Gtot(1 − d0, ε) = 1 − d0 − ftot(1 − d0, ε) = 1 − d0 −
k∑

i=1

f2li−1(1 − d0, ε)P (2li − 1) =

= 1 − d0 −

k∑
i=1

((1 − ε)f1,2li−1(1 − d0) + εf2,2li−1(1 − d0))P (2li − 1) (24)

Substituting Eq. (20) in Eq. (24) we get that:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Gtot(1 − d0, ε) = 1 −
∑k

i=1 f2li−1(d0, ε)P (2li − 1)

−
∑k

i=1((1 − ε)f1,2li−1(1 − d0) + εf2,2li−1(1 − d0))P (2li − 1)

= 1 −
∑k

i=1((1 − ε)f1,2li−1(d0) + εf2,2li−1(d0))P (2li − 1)

−
∑k

i=1((1 − ε)f1,2li−1(1 − d0) + εf2,2li−1(1 − d0))P (2li − 1)

= 1 −
∑k

i=1((1 − ε)f1,2li−1(d0) + εf2,2li−1(d0)
+(1 − ε)f2,2li−1(d0) + εf1,2li−1(d0))P (2li − 1)

= 1 −
∑k

i=1(f1,2li−1(1 − d0) + f2,2li−1(1 − d0))P (2li − 1)

(25)

Taking into account that f1,2li−1(d)+f2,2li−1(d0) = 1 and
∑k

i=1 P (2li−1) = 1, the last
expression of Eq. (25) reads:

Gtot(1 − d0, ε) = 1 −

k∑
i=1

(f1,2li−1(1 − d0) + f2,2li−1(1 − d0))P (2li − 1) =

= 1 −
k∑

i=1

P (2li − 1) = 1 − 1 = 0 (26)

Fig. 3 gives the bifurcation diagram for a random network with the degree distribution
contains only odd degrees, resulting from Eq. (19). The two branches of symmetric
solutions around the steady solution d0 = 1

2
still exist.
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Figure 3: Bifurcation diagram of the density of “A” voters with respect to the switching
probability ε, as constructed using the mean-field approximation of the majority-voter
dynamics evolving on networks containing only odd degrees (here 5, 7, 9) (as produced
using Eq. (18), (19)).

3.2 RRN with even connectivity distribution

In the general case of a network (G, E) with arbitrary even constant connectivity degree,
the time evolution of the density reads:

dt+1 = f2l(dt, ε) (27)

with

f2l(d,ε) = (1 − ε)

l−1∑
i=0

(
2l

i

)
d2l−i(1 − d)i + ε

2l∑
i=l

(
2l

i

)
d2l−i(1 − d)i (28)

Eq. (28) can be written as

f2l(d,ε) = (1 − ε)f1,2l(d) + f2,2l(d) + ε

(
2l

l

)
dl(1 − d)l (29)

where f1,2l(d) =
∑l−1

i=0

(
2l

i

)
d2l−i(1− d)i and f2,2l(d) =

∑l−1
i=0

(
2l

i

)
d2l−i(1− d)i. Similar to the

proof of remark 3.1.2, the two parts f1,2l(d)f2,2l(d), are symmetric with respect to d = 1
2
.

Due to the perturbation term ε
(
2l

l

)
dl(1− d)l the function loses its symmetry, resulting to

the symmetry breaking of the corresponding bifurcation diagram of Eq. (27), (Fig. 4).

4 The mean field majority-voter model dynamics in

networks with arbitrary degree distribution

In order to extract the mean field approximation for complex networks with arbitrary
degree distributions, we choose at random a node i. Let k be the degree of the i -th node
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Figure 4: Bifurcation diagram of the density of A voters with respect to the switching
probability, as constructed using the mean field approximation of the majority-voter dy-
namics evolving on a RRN with constant degree distribution equal to 8 (as produced
using Eq. (28) and the fixed point solution of Eq. (27)).

and dt be the density of A voters on the network at time t. Then, the probability of the
i -th individual (with degree k) to have a preference A at the next time step t + 1 is

fk(dt, ε) =

k∑
n=0

a(k, ε)

(
k

n

)
dk−n

t (1 − dt)
n (30)

where a(k, ε) =

{
ε, ifn ≤ kmax

2

1 − ε, else
. Let f(dt, ε) be the probability at time t + 1 a randomly

chosen zero node, to become one. Then

f(dt, ε) =

kmax∑
k=1

fk(dt, ε)P (k) (31)

where P (k) be the connectivity degree distribution. The time evolution of the switching
probability reads

dt+1 = f(dt, ε) (32)

For the computation of the stationary points one has to solve the following fixed-point
equation:

d − f(d, ε) = 0 ⇔ G(d, ε) = 0 (33)

For complex networks with a high heterogeneity in the connectivity distribution (such as
scale free networks) the fixed point solution of Eq. (33), given Eq. (30) and Eq(31) may
become a non-trivial computational task as for a degree distribution with heavy nodes
one needs to compute polynomial coefficients of the order of

(
k

n

)
.
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5 The Equation-free approach for multi-scale com-

putations on complex heterogeneous networks

For detailed individualistic/ stochastic models whose dynamics deploy on heterogeneous
networks, the derivation of explicit efficient macroscopic representations for the emer-
gent dynamics in a closed form is most of the times an overwhelming difficult task. The
Equation-free approach can be used to bypass the need for extracting explicit continuum
models in closed form [29, 14, 44, 36, 30, 43, 25]. The key assumption of the methodol-
ogy is that a macroscopic model for the emergent dynamics exists and closes in terms of
a few coarse-grained variables. These coarse-grained variables are usually the low-order
moments of the detailed evolving distribution over the networks. What the methodology
does, in fact, is to provide closures on demand in a computational manner. The method-
ology can be described by the following steps (see also Fig. 5):
(a) Choose the coarse-grained statistics, say x, for describing the emergent behavior of
the system and an appropriate representation for them (for example the mean value of
the underlying evolving distribution).
(b) Choose an appropriate lifting operator µ that maps to a detailed distribution U on
the network. (For example, µ could make random state assignments over the network
which are consistent with the densities).
(c) Prescribe a continuum initial condition at a time tk, say, xtk .
(d) Transform this initial condition through lifting to N consistent individual-based real-
izations Utk = µxtk .
(e) Evolve these N realizations for a desired time T , generating the Utk+1

, where tk = kT .
(f) Obtain the restrictions xtk+1

= ℵUtk .
The above steps, constitute the so called coarse timestepper, which, given an initial coarse-
grained state of the system xtk at time tk reports the result of the integration of the model
over the network after a given time-horizon T (at time tk+1), i.e.

xtk+1
= ΦT (xtk ,p). (34)

where ΦT : Rn × Rm → Rn having xk as initial condition.

The existence of a coarse-grained the temporal evolution operator, ΦTh
, which is as-

sumed to be unavailable analytically in a closed form, implies that the higher order mo-
ments of the distributions become, relatively quickly, slaved to the lower, few, slow ones.

At this point one can implement around the coarse-grained input-output map Eq.
(34), a fixed point iterative scheme order to compute fixed point or periodic solutions at
certain values of the parameter space. For example for low-order systems coarse-grained
equilibria can be obtained as fixed points, of the map :

x − ΦT (x,p) = 0. (35)
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Figure 5: Schematic description of the concept of the Equation-Free approach.

6 Coarse-Grained Numerical analysis using the Equation-

free approach

The results are obtained using networks of N = 10000 individuals. We performed a
coarse-grained analysis for ER, WS and scale-free networks [1, 12, 50, 38]. The coarse-
grained bifurcation diagrams, with respect to the switching probability parameter ε, were
constructed exploiting the Equation-free framework as described in the previous section.
Our coarse-grained variable is the density d of the A voters. At time t0, we created Ncopies

different distribution realizations consistent with the macroscopic variable d . The coarse
timestepper is constructed as the T -map:

dt+1 = ΦT (dt, ε) (36)

The derived coarse-grained bifurcation diagrams are depicted in Fig. 6-8 respectively.
The stationary states on the coarse-grained bifurcation diagram have been obtained as
fixed points of Eq. (35) averaging over Ncopies = 10000 realizations. Continuation around
the coarse-grained turning points is accomplished by solving the Eq. (35) augmented by
the pseudo-arc-length continuation, i.e.:

{
G(d, ε) = d − Φ(d, ε) = 0

N(D, ε) = a(d − d1) + b(ε − ε1) − ds = 0
(37)

where a = d1−d0

ds
and b = ε1−ε0

ds
and is the pseudo arc-length continuation step. The ordered

pairs (d0, ε0) and (d1, ε1) are two already computed solutions. The computation of the
fixed points can now be obtained using an iterative procedure like the Newton-Raphson
technique.The procedure involves the iterative solution of the following linearized system:

[
1 − ∂ΦT

∂d
−∂ΦT

∂ε

a b

] [
δd
δε

]
=

[
d − ΦT (d, ε)

N(d, ε)

]
(38)
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Figure 6: Coarse-grained bifurcation diagram of the density of “A” voters with respect
to the switching probability ε, using the detailed majority-voter simulator evolving on an
Erdös-Rényi network constructed with connectivity probability p = 0.0008, adding, self
connection for each node. Solid lines correspond to the coarse-grained stable states while
the dotted lines correspond to unstable ones. The inset depicts the computed eigenvalue
λ, determining the systems, coarse grained stability.

Note that for the calculation of the Jacobian ∂ΦT

∂d
and ∂ΦT

∂ε
, no explicit macroscopic

evaluation equation are needed. They can be approximated numerically by calling the
black-box coarse timestepper at appropriately perturbed values of the corresponding un-
knowns (d, ε). The above framework enables the microscopic simulator to converge to
both coarse-grained stable and unstable solutions and trace their locations [25]. The
eigenvalues (here is just one) of the Jacobian ∂ΦT

∂d
determine the local stability of the

stationary solutions: a fixed point is stable when the modulus of all eigenvalues is smaller
than one and unstable if there exists at least one eigenvalue with modulus greater than
one.

Each bifurcation diagram consists of two families of solutions. One family of solutions
is characterized by a saddle node bifurcation: the high density state (where the majority of
individuals vote for A) bifurcates through a turning point (found at ε = 0.2207, ε = 0.1869
and ε = 0.1641, for the networks of ER (Fig. 6), WS (Fig.7) and Barabasi (Fig.8)
respectively), marking the change in the stability. The second family of low density states
(where the majority of B voters), is stable for all values of ε for all the networks.

In Figs. 9, 10 we also show the bifurcation diagrams obtained using the mean field
approximations as these are derived from Eq.(30),(31) and (33) using the ER and WS
degree distributions respectively. The degree distributions are taken to be symmetric
around k = 8.

The coarse-grained bifurcation diagrams obtained using the detailed individual-based
model evolving on the ER and WS networks are also shown for comparison reasons. The
relatively simple mean field models assume randomly selected individuals with replace-
ment, omitting therefore spatial correlations. Compared to the results obtained by the
Equation-free approach, the MF approximation in the case of the ER networks gives
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Figure 7: Coarse-grained bifurcation diagram of the density of “A” voters with respect to
the switching probability ε, using the detailed majority-voter dynamics simulator evolving
on a WS network constructed with rewiring probability p = 0.2 and 2k = 8 initial
neighbors, adding self connection for each node. Solid lines correspond to the coarse-
grained stable states while the dotted lines correspond to unstable ones. The inset depicts
the computed eigenvalue λ, determining the systems, coarse grained stability.

almost identical bifurcation diagrams. In the case of WS the MF gives a qualitatively
similar bifurcation diagram, yet a quantitatively different one. In particular, close to the
coarse-grained criticalities, the analytical model deviates from the actual detailed sim-
ulation results, while the Equation-free framework captures the correct coarse-grained
behavior.

7 Conclusions

Over the years, majority-rule or as otherwise called majority-voter models have been ex-
tensively used to gain a better understanding on the behavior of many complex systems
as diverse as opinion formation and voter/election dynamics, epidemic spread dynam-
ics, culture and language dynamics, crowd flow design and management, and neuro-
science. Due to the nonlinear, stochastic nature of such individualistic models and their
coupling to complex network structures, the emergent behavior cannot be-most of the
times-accurately modeled and analyzed in an efficient straightforward manner. Hence,
the systematic exploration of the emergent dynamics of network-evolving individualistic
models and in particular those based on the majority-rule mechanism becomes, in this
context, of great importance. We proved analytically how the parity and heterogeneity
of the degree distributions influences the symmetry of the coarse-grained stationary solu-
tions of the basic majority-voter model.We constructed the mean field approximations of
the majority-voter dynamics describing the evolution of the zero-th order moment of the
underlying distributions (that is the density of A voters). We also showed how one can ex-
ploit the Equation-free framework to bridge the micro to macro scales of the dynamics of
stochastic individual-based models that evolve on heterogeneous complex random graphs.
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Figure 8: Coarse-grained bifurcation diagram of the density of “A” voters with respect to
the switching probability ε, using the detailed majority-voter dynamics simulator evolving
on a Barabasi network constructed with m0 = 3 and m = 2. Solid lines correspond to the
coarse-grained stable states while the dotted lines correspond to unstable ones. The inset
depicts the computed eigenvalue λ, determining the systems, coarse-grained stability.

In particular, we showed how systems-level tasks such as bifurcation and stability analy-
sis of the coarse-grained dynamics with respect to network topological characteristics can
be performed bypassing the need to extract macroscopic models in a closed form. Our
analysis was focused on four of most-cited types of complex networks: Random Regular,
ErdsRnyi, Watts and Strogatz and Barabasi (scale free) networks. Using the individual-
istic, stochastic simulator as a black-box timestepper for the coarse-grained variables, we
constructed the coarse-grained bifurcation diagrams with respect to the basic parameter
of the majority-voter model: the switching state probability. The derived coarse-grained
bifurcation diagrams were compared with the ones obtained using the corresponding mean
field approximations. The analysis revealed that especially near the critical turning points
the mean-field approximations introduce certain quantitative bias. However the efficiency
of the Equation-free approach emerges in the case of scale-free networks. Due to the high
heterogeneity of such networks with respect to the heavy tailed connectivity distribution,
the bifurcation computations, based on the corresponding mean field approximation, be-
come, as we discussed in section 4, an overwhelming difficult computational task. Further
research could be directed towards the investigation of the influence of more accurate
closures, such as the ones relating the correlations between the states of two or more
connected nodes in the network leading to pairwise approximations [26, 27, 28, 46]. An-
other issue that could be also further studied is related to one of the basic prerequisites
of the Equation-free framework: the a-priori knowledge of the appropriate observables.
However, for arbitrary complex networks these are not known before-hand. In this case,
the use of state-of-the-art data nonlinear dimensionality reduction techniques that can be
exploited to efficiently extract the correct coarse-grained variables from a more complex
individual-based large-scale code could be also attempted.
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Figure 9: Bifurcation diagram of the density of “A” voters with respect to the switching
probability ε, as obtained with the mean-field approximation of the majority-voter dy-
namics evolving on a Erdös Rényi type network with(marked with a triangle) compared
to the coarse-grained bifurcation diagram obtained with the detailed simulator (marked
with a circle).
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Abstract

Von Neumann established that discretized algebraic equations must be consistent
with the differential equations, and must be stable in order to obtain convergent
numerical solutions for the given differential equations. The ”stability” is required
to satisfactorily approximate a differential derivative by its discretized form, such
as a finite-difference scheme, in order to compute in computers. His criterion is
the necessary and sufficient condition only for steady or equilibrium problems. It
is also a necessary condition, but not a sufficient condition for unsteady transient
problems; additional care is required to ensure the accuracy of unsteady solutions.
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1 Introduction

Systems of ordinary differential equations that exhibit chaotic responses have yet to be cor-
rectly integrated. So far no convergent computational results have ever been determined
for chaotic differential equations, since the truncation errors introduced by discretized
numerical methods are amplified for unstable computations. Numerical methods usually
convert continuous differential equations to a set of algebraic equations to be solved by
computers. Von Neumann established that discretized algebraic equations must be con-
sistent with the differential equations, and must be stable in order to obtain convergent
numerical solutions for the given differential equations. A typical property of chaotic
differential equations is that they are unstable. It is not straightforward to check the
consistence and stability of a numerical computation. In particular, it lacks a practical
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way to conveniently check the convergence of numerical results for non-linear differential
equations that a linear stability analysis may not yield desirable and confident conclusions.

Parker and Chua [1] suggested a practical way of judging the accuracy of the numerical
results from a non-linear dynamical system is to use two or more different methods to
solve the same problem. If the two solutions agree then they can be assumed accurate.
Viana [2] proposed to solve the same problem in two or more different machines to ensure
the convergent results. Both approaches are testing to ensure that truncation errors will
not overwhelm the correct solutions. The same propose can be achieved by solving the
problem in one machine and one method, but two different integration time steps [3,
4]. All three ways are easy to apply, but the agreement of two computational results by
either of these ways is only a necessary condition, and is not sufficient. Typical examples,
well known to all graduate students in thermal science, are unsteady heat conduction
problems; even though, the heat equation is linear. They demonstrated the additional
difficult of checking convergence for unsteady problems.

Without knowing it is not a sufficient condition, Lorenz [5] mistakenly concluded that
his solution for his 1990 model was convergent initially for thirty years! This contradicts
to the fact that the initial period of the Lorenz solution for his 1990 model is mixed with
many unstable and divergent sections with some stable sections. One cannot claim that
the mixture of errors in many unstable computations with some short time convergent
computations is a correct solution, since the differential directives cannot be replaced by
their computable discretized forms unstable periods. We will explain why the convenient
ways to check convergence of unsteady computation is insufficient below and followed by
numerical examples.

2 Mathematical Explanation

We will solve a set of, or a differential equation

du

dt
= f (u, t) (1)

whose exact solution is u = u (t). Let’s use Xi(t) (i = 1, 2) denotes the computational
results for two different methods, or two different machines, or two different integration
time steps; Ei(t) is the corresponding computational errors. Therefore,

Xi(t) = u (t) + Ei(t) (2)

If the difference of two computational results is small, such as

|X1 − X2| = |E1 − E2| < ε, (3)

where ε is a pre-assigned small number, it has a possibility that E1 and E2 are both small,
and the computational results are convergent. On the other hand, (3) does not guarantee
that both E’s are small; it only states that the difference of two errors is small. Hence,
(3) can only be a necessary condition. This is the mistake made by Lorenz [5].
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3 Numerical Examples

Two examples will be given below to demonstrate the convergence of numerical solutions
for differential equations.

A. The first one is a simple linear differential equation and we will construct stable
computations to demonstrate that (3) is only a necessary condition.

The equation,
du

dt
= −10u, (4)

is used with the initial condition u(0) = 1. The exact solution is

u (t) = exp (−10t) , (5)

The explicit finite-difference scheme is chosen for an unstable computation as

un+1 − un

∆t
= −10un

or

un+1 = (1 − 10∆t) un. (6)

It is clear that (6) is unstable, if ∆t > 0.1, the truncation errors is O (∆t). It is well
known that the numerical result will diverge for an unstable computation. We will show
two computational results in comparison with the exact solution: one is for ∆t = 0.05;
the other ∆t = 0.06. Two computational results agree completely initially. This is be-
cause that the computations of first step for two different time steps are identical. Since
the truncation errors are O (∆t), the results for the first few steps, when the computation
time is about the same O (∆t) , cannot be accurate. The comparison presented in the Fig.
1 demonstrates two computational results are not close to the exact solution even though
they are fairly close to each other. This confirms the claim that the small difference of two
computational results can only be a necessary condition for the convergence of unsteady
problems. On the other hand, both computational results asymptotically converge to the
exact solution, zero, for the steady problem. This is an example to show that von Neu-
mann’s consistent and stable conditions are necessary and sufficient for steady problems,
but not sufficient for unsteady problems. For a consistent and stable computation, it
still requires checking computed results by successively reducing time-step size until the
difference is acceptably small; then, the convergence can be claimed [4] for an unsteady
computation.

Another commonly known example, frequently taught in the first-year graduate course
in heat transfer, is the heat equation. It is well known that a consistent and stable com-
putation is sufficient to provide a convergent steady-state solution, but cannot guarantee
a convergent transient solution. A convergent transient solution can only be obtained by
successively reducing the integration time steps until the change of the computed transient
results is acceptably small.

B. The second example is the Lorenz second model [4, 5, and 7]. The model is
composed with three non-linear first-order differential equations.
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⎧⎨
⎩

X ′ = −Y 2 − Z2 − 1
4
(X − 8)

Y ′ = XY − 4XZ − Y + 1
Z ′ = 4XY + XZ − Z

(7)

The initial condition used below is (X = 2, Y = 1, Z = 0). The error curve presented
in Fig. 2 is the difference of X(t) computed by the fifth-order Taylor-series method [7]
with 10-6 time step by the Taylor-series method for time-steps 10-7 , respective. The
conclusion is independent of the numerical methods used to integrate the equations (7).
The details of comparison of various methods can be found in [4].

The error curve shown in Fig. 2 differs obviously from any non-convergent error curves
for any linear differential equations. The recorded difference of two computational results
is too small when time is less than 30; so, we did not plot them. According to Lorenz’s
opinion [5], this shows that the numerical solutions are good for this short period of
time; even thought, he agreed that numerical solutions for long time is not possible. It
is worthy to point out that the time steps used in our computation is much smaller than
what Lorenz used; so, our good results, according to Lorenz’s criterion, can be extended
to larger time. We will explain why this concept is wrong below.

The only available detailed error analysis for numerical solutions of non-linear differ-
ential equations, as we are aware, is for the famous Lorenz 1963 model [8]. It clearly
demonstrated that two major amplification mechanisms exist for truncation errors, in-
troduced by all numerical methods. The first is the explosive amplification mechanism,
which can instantly amplify the truncation tremendously when the trajectory penetrates
the separatrix by violating the differential equations. Since the Lorenz 1990 model does
not have an attractor, the explosive amplification does not occur, confirmed by our nu-
merical computations [4]. We will not further discuss it here; the interested readers can
read [8].

The second mechanism is the exponential amplification of errors, which is also found
in the numerical solution of linear differential equations as explaining in the first example.
An unstable computation for unsteady linear differential equations can result two kinds
of behaviors uniformly in time: exponential growth of errors, or exponential growth of the
amplitude of oscillatory solutions. The crucial difference between non-linear differential
equations and linear ones is the exponential error amplification for non-linear differential
equations is not uniform in time, see Fig. 2. The growth of truncation errors occurs in
”irregular valleys”. This suggests the existence of certain dynamic structures in the phase
space. This agrees with the exponential amplification of errors described in [8]. When
two trajectories move along the direction of a stable manifold, the distance between them
shrinks; in other words, errors are reduced; when trajectories move along an unstable
manifold, errors are amplified. The combined consequence is, however, the exponential
growth of truncation errors in time as shown in Fig. 2.

It should be emphasized here that the error amplification is due to the unstable compu-
tation locally, which violates von Neumann’s convergence criterion. For linear differential
equations, it will lead to divergent solutions; one would not expect it could provide cor-
rect solutions for non-linear differential equations. If it were so, it would mean that it
were easier to numerical integrated non-linear differential equations, since no check of
convergence would be needed. Then, it was always legitimate to replace a derivative by
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Figure 1: Comparison of computational results with the exact solution. The number on
the right of the plotting points indicates the computational time of the point.

Figure 2: The difference of numerical results of time steps 10−6 and 10−7.

a finite-difference counterpart without worrying they may not even be approximations!
This is exactly what has happened in solving chaos or turbulence numerically now.

It is also worthy to mention that it has been demonstrated in [8] that a small difference
of two computations does not imply either one is close to the correct solution for unsteady
problems. This has been experienced many times in the history of numerically solving
both linear and non-linear differential equations of unsteady problems, but has been
overlooked in solving chaos or turbulence numerically.

This difficulty associated with unstable computation is the property of non-linear dif-
ferential equations, and cannot be remedied by adjusting numerical methods, see [8]. Since
the truncation errors are not controllable and occur randomly, the numerical computa-
tional chaos results, or turbulence is also random in nature; irrespectively, the associate
boundary conditions are either independent of time, or depend on time regularly. Con-
sequently, an unstable numerical result is the random amplification of truncation errors,
induced by numerical processes, and has no physical meaning.



26 Lun-Shin Yao

We do not believe that our paper can reverse the avalanche of treating numerical
errors as numbers with physical significance, but hope someone, in the near future, may
take a little effort to honestly compare computational results with carefully carry-out
measurements. It is time to reconsider the activities of continuously producing numerical
errors in large amount without any justification. Fundamental principles in science should
always be respected before one can prove otherwise.

4 Comments, discussions, and open problems from

some experts in the field

I will first outline some well-known basic principles in numerical mathematics, which will
help to explain the following questions. In calculus, we know

∂u

∂t
= lim

∆t→0

u (t + ∆t) − u (t)

∆t
(8)

Since computers are digital computational devices, it is necessary to discretize a derivative
in order to calculate it in computers. I will use a finite-difference scheme as an example
below; the principle can be equally applied to all discretized numerical methods without
exception. A derivative can usually be replace by a finite-difference form,

∂u

∂t
= (

u (t + ∆t) − u (t)

∆t
) + TE (truncature errors) , (9)

where TE represents truncation errors and is of O (∆t) in the above example. In the
limit of ∆t approaches zero, (9) agrees with (8). The TE always exists in any discretized
process. Algebraic equations are resulted after all derivative terms being replaced by
their difference forms; for example, terms in the bracket in (9). If the resulting algebraic
equations are stable, TE will be exponentially decayed and the term inside the bracket is
a good approximate of the derivative, since (8) will be asymptotically satisfied. On the
other hand, if the resulting equations are unstable, the TE will be exponentially growing,
and (8) is violated, or it implies that

u (t + ∆t) − u (t)

∆t
does not converges to

∂u

∂t
. (10)

The resulting equations after discretization have nothing to do with the original differential
equations, and certainly are not an approximation of the original differential equations.
Thus, the solutions of such algebraic equations are unrelated to the original differential
equations. For linear differential equations, an unstable computation usually results ex-
ponentially divergent results, or exponentially divergent oscillatory results, a clear sign of
a failure computation. This is why von Neumann put forward that the ”stability” is the
necessary and sufficient condition for a convergent solution for steady-state problems.

For unsteady problems, it is necessary to use even smaller ∆t than required the one
by Courant-Fredrich-Levy (CFL) condition in order to get an accurate transient solution
as demonstrated in the first example of the current paper. There are many examples can
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be found in heat conduction problems in undergraduate heat transfer textbooks. Conse-
quently, stability is only a necessary condition to obtain an accurate transient solution.

I will answer and discuss the following questions.

1. The author comments the stability of the numerical computations for nonlinear ordi-
nary differential equations. More precisely, the author comments that the agreement
of two computational/numerical results is only necessary not sufficient condition
for the accuracy of the computational/numerical results. Really, the accuracy of
the computational/numerical results is very important scientific problem. Unfortu-
nately, the author doesn’t propose a way for the solution of this problem.

Answer: The answer to this question is very simple for linear or non-linear differen-
tial equations, if the resulting algebraic equations are stable; continuously reducing the
integration time step, ∆t until the change of the transient solutions for two different time
steps becomes acceptably small. Then, both results can be considered as an accurate
transient solution. If one carries out the computation of the first example in the paper by
further reducing the integration time step, an accurate transient solution can be readily
found, and agree with the exact solution to any degree as one wish. There are many other
examples of heat conduction problems can be found in undergraduate heat transfer texts.

For non-linear chaos differential equations, when the governing parameter is larger
than its critical value, the situation becomes much more complex. Two Lorenz’s models
have been discussed in [4, 8] and his second model is also used as the second example of
this paper. The Lorenz’s first model was analyzed in detail and reported in [8]. It shows
that the truncation (numerical) errors are amplified exponentially in the unstable region
(manifold); are reduced exponentially in the stable region (manifold). According to the
basic principle outlined above, it is clear that the numerical results in the unstable regions
cannot be considered as an approximate solution to the original differential equations.
Similar conclusion can be made for the Lorenz’s second model and reported in [4].

In addition, we have identified that the Lorenz’s first model contains local separatrix,
not in his second model. The truncation errors can be amplified explosively when the tra-
jectory penetrates the virtual separatrix, which violates the differential equations. The
existence of a virtual separatrix is a consequence of singular points of a non-hyperbolic
system of differential equations, which is not shadowable [8, 9]. A commonly cited com-
putational example in chaos involving two solutions of slightly different initial conditions
that remain ”close” for some time interval and then diverge abruptly when one pene-
trates the virtual separatrix, violating the differential equations and the other does not.
Before it was pointed out in [8, 9], that this phenomenon is actually due to the explosive
amplification of numerical errors, and violation of the differential equations as described
above, this behavior was often believed to be a typical characteristic of chaos, and fre-
quently used as the evidence that a computation is chaos. Similar computational results
can occur for two different integration time steps; many would consider such results as
acceptable since it is a “twin brother” of sensitivity to initial conditions and a typical
characteristic of chaos. This mistake deserves clarification and explained thoroughly in
[8].

Additional examples for other non-linear chaos differential equations are cited in [3].
The central issue discussed in [9] is that no chaos solution exists for differential equations,
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since all computations are unstable. This is the obvious consequence that all discretized
numerical methods have truncation errors and are incapable to solve chaos differential
equations.

Since non-linear differential equations can have multiple solutions when the value of
its parameter is larger than its critical value, once the trajectory went in the unstable
region, the amplified truncation errors alters its initial condition equivalently for the next
stable region. This can lead to next stable solution from the one that one was originally
trying to get as discussed in [10]. This is a brand new topic, which has never been studied,
yet.

2 I tried to re-evaluate the revised version of the manuscript in goodwill. However
in his revised manuscript the author insists in keeping his claim that ”Lorenz [5]
mistakenly concluded that his solution for his 1990 model was convergent initially
for thirty years!” (in Introduction). For me this was the one and only major issue
I had, as reading Lorenz’s answer to Yao and Hughes published in Tellus (2008),
60A, 806–807, I think that this claim is both strong and wrong.

Answer: The answer of this question is simple and clear by judging it from the basic
principle outlined above. Lorenz’s numerical results of his second model clearly show
the trajectory went through stable and unstable regions alternatively, see Fig. 2 of the
paper and [4]. The difference of the results for two different time steps increases when
the trajectory moves in the unstable region, where (8) is violated; the difference decreases
when the trajectory moves in the stable region. Can one claim such a computational
result is good when most parts of it violate (8), a definition in calculus?

Many authors followed Lorenz’s step [14] and claimed mistakenly that their solution
is good for a short initial period. Form the above discussion; it is clear that the initial
good period will be zero, if the initial point is selected in the unstable region. If the initial
condition is located in the stable region, the computed result will be good until it moves
out of the stable region and gets into the unstable region.

Since without numerical instability, there is no chaos; so they can only claim their
results is a good regular solution, not chaos for the initial period. I want to emphasize
again that all numerical chaos are amplified numerical errors.

3 The topic of this paper is rather interesting. But the extension and scope of the
paper seems to be very brief for what such a topic may require. The references seem
to be devoted to self-citations, when there is a huge amount of scientific literature
in the field.

Answer: Detailed analysis are available in [3, 4, 8, 9] and additional references are
listed below, which are all my own work. I do not know the existence of any written paper
in line with my conclusion. If there are some, I welcome readers to reveal them to me. The
entire huge amount of scientific literature devotes to treat amplified numerical errors as
computed chaos with very few exceptions cited in the additional references listed below.
This is exact the reason that I tried to push this paper forward. Fortunately, science is not
a democratic system that majority wins; in fact, truth always prevails in science. I hope
the basic principles, outline above, can help readers to analyze the situation rationally by
themselves, not just follow the argument of established authorities.
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4 The major part of the discussion seems to be devoted to demonstrate ”that the
small difference of two computational results can only be a necessary condition for
the convergence of unsteady problems”. All the discussion seems to emerge from Eq.
3, which from another side (may be a too simplistic one), seems to be self-evident:
”getting two bad results rather similar does not guarantee that the conclusion is
alright”. The focus of the discussion could be set in dealing with the definition of
good or bad.

Answer: I do not really understand this question, but I believe the above discussion
has already answered this question.

5 It may be of interest to cite some of the large amount of references in the litera-
ture devoted to the topic of solving a problem by computing many similar initial
conditions/parameters, and analyzing later the results. This aims to assign given
probabilities of success to every computed solution (as for instance in the field of
meteorology).

Answer: Please read the answer of the second question, and note that the large
amount literatures ignored the basic principles discussed above.

I would like to point out that a slightly different initial condition can result a com-
pletely different long-time solution for non-linear differential equations when the governing
parameter is above its critical value; so there are multiple solutions exists even for non-
turbulent flows. I list some references [11-14] below for interesting readers to explore.
More references can be found in them. They are also all my works, since my works are
the only theoretical studies exist, beside few experiments in fluid mechanics.

It is worthy to mention, from our experience, that the computation of the Navier-
Stokes equations fails to converge if the Reynolds number is too much larger than the
critical Reynolds number. This is the reason why a direct numerical simulation cannot
be use to study flow transition; so, it is also unhelpful for turbulence.

A well-known excise to stabilize an unstable computation is to use upwind difference
scheme; however, the added numerical viscosity associated with the upwind difference
scheme may overwhelm the actual viscosity to invalidate the computational results. One
can see why weather forecast is so unreliable, it is not because that the Navier-Stokes
equations are incorrect; it is due to lack of a method to solve them correctly.

6 Along the paper, the concepts of chaoticity and stability seem to be mixed somehow,
and a clear separation of both definitions should be appreciated.

Answer: The rigorous mathematical definition of chaos can be found in [2, 8].
Traditionally, the linear stability analysis in fluid dynamics is to study the growth

or the decay of a very small perturbation quantity added to the steady-state base flows.
For a laminar flow, the differential equations are stable, but the difference scheme can be
unstable. This leads to CFL condition.

The extension of such analysis for time-dependent base flows is complex and unsuccess-
ful. The linear-stability analysis of the algebraic equations resulted from the discretization
of differential equations is very similar to the stability analysis in fluid dynamics. An easy
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alternative is to solve differential equations with two different time steps, and hope the
difference is acceptably small as discussed in this paper.

For chaos differential equations, it becomes very complex, since the differential equa-
tions are themselves unstable. There is no way to design a stable numerical method for
unstable differential equations. As noted in the Question 5, there is a well-known way to
stabilize an unstable computation by using use upwind difference scheme; however, the
added numerical viscosity associated with the upwind difference scheme may overwhelm
the actual viscosity to invalidate the computational results.

I have repeatedly tried to explain that numerical chaos is simply amplified numerical
errors. Numerical chaos and numerical instabilities are different titles, but the same
object.

7 The last paragraph on page 6 deals with the numerical computational chaos results.
I agree with the fact that any numerical scheme will diverge from a true orbit
beyond certain timescales for given problems. But some discussion about how these
timescales may vary depending on the nature of the orbit, and even may be very
long even when the orbit is chaotic is of interest. A discussion about the shadowing
and predictability topics should be also appreciated.

Answer: This answer of this question is a part of the Question 2 and copy below for
the convenience of readers.

Many authors followed Lorenz’s step [5] and claimed mistakenly that their solution
is good for a short initial period. Form the above discussion; it is clear that the initial
good period will be zero, if the initial point is located in the unstable region. If the initial
condition is selected in the stable region, the computed result would be good until it moves
out of the stable region and gets into the unstable region.

The concept of shadowing is briefly reviewed in [9]. It was originally invented to save
chaos theories for the hyperbolic systems. Since the relation between chaos theory and
differential equations has not been established (Smale’s 14th problem) and topological
transitivity cannot be proved and is likely invalid, shadowing is not a useful concept for
differential equations.

8 There is a vast amount of literature devoted to the numerical methods and how
they deal with chaos. A brief panorama of the field should be of interest. After
this, it may happen the statement ”but hope someone, in the near future, may take
a little effort to honestly compare computational results with carefully carry-out
measurements” should be revised by the author.

Answer: It is a fact there is a large amount of literature devoted to the numerical
methods and chaos, since both are the main streams of research in their areas and have
been heavily funded by government agents; in particular, in the US. How could so many
smart researchers all made the same mistake of violating the basic principles of numerical
methods in solving differential equations, put forward by von Neumann?

Maybe, this is due to the limitation of human brains to discover brand new idea;
instead, we look established authorities for guidance. However, please read my answer of
the question 3 above.
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Abstract

We study different types of manipulators’ attractors and propose a motion con-
trol method. In our analysis the manipulator’s motion is perturbed and its stability
investigated using the nonlinear equations of perturbations and linearized equations
for practical control. In order to realize a practical control the common areas of
stability for nonlinear and linear models are identified. The maps of stability cal-
culated as functions of model parameters are proposed as a tool for motion control.
The spectrum of Lyapunov exponents is introduced as a practical measure of mo-
tion quality. The procedure allows choosing a way of reaching system stability in
order to avoid undesired attractors. Additionally, the possibility of the occurrence
of strange chaotic attractors in manipulators, ways they appear, and codimension
2 bifurcations have been analyzed.
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1 Introduction

The problems concerning mechanical vibrations of manipulators create an important issue
in the manipulator design and its motion control. Numerous papers devoted to mechanical
vibrations attempt answering the question, if and when vibrations of manipulator links
occur during its motion [12-36]. These considered both, the theoretical and practical



Nonlinear control and chaotic vibrations of perturbed trajectories of manipulators 33

aspects respectively, through investigations of single links, with a special emphasis on
their flexibility for example [24-38]. Such methods have been usually based on classical
equations of dynamics [20], most often in the form of equations of control [9-29-13].

The theory of nonlinear dynamics provides new possibilities of analysis of the dynamics
and control of mechanical systems. The investigations that have been conducted allowing
studies of new types of behavior in simple mechanical systems, such as vibrating oscillators
by means of theory of bifurcations [16-43], spectrum of Lyapunov exponents, Poincaré
maps [3-18]. In mechanical systems, chaos may lead to irregular operations and fatigue
failure [8-25-31]. From this point of view the control of chaos is understood as a way to
stabilize an unstable motion. Many papers show different ways of analysis of control in the
case of nonlinear dynamics of manipulators. For example the papers by Caracciolo have
proposed two control schemes that have been designed to achieve satisfactory performance
in the position and vibration controlling of two closed-chain planar manipulators with
flexible links. The control schemes have been designed, tuned and tested in simulation,
where the dynamic behavior of the flexible manipulators have been reproduced through a
fully coupled nonlinear model based on the finite element theory. The bifurcation control
scheme may be implemented either with or without a feedback. In the latter case, we
have the open-loop control. In static feedback control, the feedback is used to achieve
desirable nonlinear dynamics when locations of equilibria are known [1-39]. When these
locations are affected in the controlled system we can use dynamic feedback control [2-39].
In case of dynamic feedback control, it is possible to preserve the equilibrium positions in
the controlled system.

In [4] the authors have examined open-loop control of chaotic dynamics of a nonlinear
system by applying weakly periodic perturbations. One of the most popular approaches of
chaos control is the method named Ott-Grebogi-Yorke (OGY) and proposed in [15-26]. In
the OGY scheme, the control of chaos is understood as stabilization of unstable periodic
orbits embedded in a chaotic attractor by application of appropriate small perturbations
on a single system parameter. In order to achieve this task, the dynamics of the system is
followed by analyze of the Poincaré map. The unstable point of periodic orbit on Poincaré
map can be stabilized when the value of the modulus of the eigenvalues in the control
matrix [26] is smaller than one. In the Pyragas method of chaos control [28], stabilizing
of unstable periodic orbits has been applied by use of small time continuous control of a
parameter of a system, while it evolves in continuously understood time. This method is
known as delayed feedback control.

In [40] the authors have employed the time-delay feedback to anti-control of a perma-
nent magnet DC (PMDC) motor system for vibratory compactors, and hence implement
the new, electrically chaotic compactor. Firstly, the dynamic model of the anti-controlled
PMDC motor system and the proposed electrically chaotic compactor have been formu-
lated. Secondly, a nonlinear map have been derived in order to analyze the chaotic crite-
rion of the anti-controlled PMDC motor system. Anti-control of chaos of single time scale
brushless DC motor have been studied in [5]. Anti-control of chaos have been achieved by
addition of an external nonlinear term. Then, by addition of some coupling terms, using
the Lyapunov stability theorem and linearization of the error dynamics, the chaos syn-
chronization between a third-order brushless DC motor and a second-order Duffing system
have been presented. In the paper [23] a new technique of generating several independent
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chaotic attractors by design a switching piecewise-constant controller in continuous-time
systems has been shown. The controller can create chaos using an anti-control of chaos
feedback. It has been shown that nonlinear continuous-time system can possess several
attractors, depending on the initial conditions.

More detailed information about the stability analysis based on different assumptions
can be found in [6-7-10-11-22-33-41].

The spectrum of Lyapunov exponents is a powerful tool of the analysis of the non-
linear system dynamics due to fact, its values easily illustrate exponential divergence or
convergence of the trajectory on attractor [19]. The exponents describe logarithmic mea-
sure of the sensitivity of the dynamical system on arbitrary small changes in the initial
conditions. Their computation is, however, time-consuming and generally complex for
most of the nonlinear dynamical systems with more than one degree of freedom. There-
fore, it is impossible directly employing this tool in the analysis of the motion. Some
algorithms for calculation and mathematical description of Lyapunov exponents can be
found in [17-18-19-25-42].

One of the reasons of limited use of nonlinear theories in technical applications is that,
the numerical computations are often regarded as impractical. In the present paper, we
suggest a method for the analysis of manipulator vibrations and nonlinear control based on
the analysis of stability regions in the stability maps of the nonlinear and linearized system.
The method allows controlling of the system in real time. Additionally, the presented
method allows analyzing effects of changes of various parameters on the manipulator
vibrations after a perturbation of its motion. We also propose a practical scheme of
control, based on the so-called stability maps. The first step of the controlling method
consists of the determination of critical values of manipulator’s parameters for which a
change in stability, i.e., a bifurcation, takes place. The idea of manipulator instability is
understood as instability in the sense of Lyapunov [14-19]. Determining of the spectrum
of Lyapunov exponents and the Poincaré maps have allowed successful investigation of
asymptotic behaviour of the phase flow in the neighborhood of the trajectory after a
perturbation. Then, nonlinear equations of the perturbations allow determination of the
nonlinear regions of stability of the manipulator motion.

However, such a determination of requires exhaustive mathematical computations and
cannot be used for control in practice. A linear stability of the manipulator is investigated
by calculating, in real time, the eigenvalues of the Jacobian matrix in a close neighbor-
hood of the perturbation point in the manipulator’s nominal motion. As a result, the
comparison of stability regions of the nonlinear and linearized systems allows determi-
nation of their common parts. For these subregions the ranges of system parameters
corresponding to them are determined. The motion control is based on the selection of
such control parameters for which the manipulator remains in the stability subregion. In
practice, for the assumed ranges of perturbations, the stability subregions are stored in
the control system memory in the form of a collection of maps. The actual measurements
of perturbations allow for a practical selection of the control parameters from the collec-
tion (performed for assumed trajectory parameters). The determination of values of the
parameters is ruled by a choice of the way the stability region is reached. It is connected
with a specified bifurcation type, which takes place during the transition of the motion
towards the stability region.
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The advantage of the proposed method is a possibility of real-time motion control by
analysis of nonlinear stability regions without any differentiation of the equations during
the manipulator motion. Additionally, possibilities of occurrence of chaotic vibrations in
the form of a strange chaotic attractor may be also investigated. The ways of a stability
loss are investigated through the analysis of the bifurcation types [21-25-27-30-35-36-].
A theoretical analysis of nonlinear dynamics performed for the 7MAR manipulator is
presented as an example.

2 Equations of perturbations, linear and nonlinear

stability

The issue of stability of the motion becomes important when the gripping device mo-
tion becomes unstable for some parameters of the manipulator’s model. Let us assume
that the vector of the generalized coordinates of the links (the state vector) q(t, ε) =
[q01(t), . . . , q0n(t)]T , where n is a number of degrees of freedom of the links, is a solution
to the autonomous equation of motion

q̇ = F(q, ε) , (1)

where the state vector q ∈ R2n, the parameter vector ε ∈ Rm, Eq. (14), and the vector
field F is defined for R2n × Rm. Let us perturb this solution. The vector of perturbation
of the state vector has the form

ψ(t) = qp(t, δ) − q(t, ε) , (2)

where ε ∈ δ, δ is the vector of parameters of perturbation. A perturbation of motion of
an arbitrary generalized coordinate can be described as

ψi(t) = qpi(t, δ) − q0i(t, ε) , (3)

where ψi(t) describes a perturbation of the i-th generalized coordinate, qpi(t) is a per-
turbed motion of i-th generalized coordinate. The distance of the solution of the ma-
nipulator perturbed motion from the solution of the nominal motion is defined by y(t).
Generally, the vector of perturbations which can appear during motion can be presented
as

y =
[
ψ1, ψ̇1, . . . , ψi, ψ̇i, . . . , ψn, ψ̇n

]T

. (4)

Deflections of positions from the nominal motion and their time derivatives that appear
in the mechanical system of the manipulator are compensated for by changes in values
of the driving torques of the nominal motion. Let us write the vector of compensating
driving quantities as

∆ = [control system 1, . . . , control system n]T . (5)

The compensation vector ∆ is in practice a set of parameters of the control systems.
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Substituting Eqs. (2) and (4), their derivatives and a vector of compensating quantities
∆ into the equations of motion, we obtain the dynamics equations of the perturbed motion

ẏ = Ay + B∆ + N , (6)

where y, N ∈ R2n, A(q, q̇, q̈, ε) ∈ R2n×2n, B(q) ∈ R2n×n, ∆ ∈ Rn. A Taylor series
has been used to expand the trigonometric functions including components of the vector
y. A degree of nonlinearity of Eq. (6) depends on the form of the series expansion
of the trigonometric functions. The matrix N(q, q̇, q̈,y) includes the nonlinear terms
of the equations of motion (6). After the perturbation of the manipulator operation, its
nominal motion has been eliminated from the perturbation equations due to the extraction
of classical equations of dynamics of the nominal motion from them. Next, the equations
of dynamics written for the nominal motion of the manipulator has been extracted from
the perturbation equations, taking thus into consideration the manipulator’s motion after
perturbation. It is possible, due to the fact, the nominal motion is compensated for
through the nominal driving torques of the drive systems. As a result Eq. (6) received
the form

ẏ = G(y,q, q̇, q̈, ε,∆) , (7)

where y ∈ R2n, the parameter vector ε ∈ Rm, ∆ ∈ Rn, the space function G ∈ R2n×Rn×
Rm. One from the solutions of Eq. (6) has the form Eq. (8). This solution corresponds
to the moment of motion perturbation.

2.1 Stability in the sense of Lyapunov

The problem of stability in the Lyapunov sense [18-30] of the gripping device motion
is formulated as an analysis of stability of the equations of the perturbed motion, as a
function of ε,∆

y = 0 . (8)

Lyapunov exponents associated with a trajectory are a measure of the average rates
of expansion and contraction of the trajectories surrounding it. They are asymptotic
quantities, defined locally in the state space, and describe the exponential rate, at which
a perturbation to a trajectory of a system grows or decays with time at a certain location
in the state space. The Lyapunov exponents calculated for the nonlinear system are
described by [19-34]

λi = lim
t→∞

1

t
ln |mi(t)| , i = 1, ..., 2n , (9)

where all of the mi are the eigenvalues of matrix of the fundamental solutions of linearized
equation of perturbation. The procedure used to determine the Lyapunov exponents can
be considered as a generalization of linear stability analysis. The Lyapunov exponents are
global quantities associated with an attractor even though they are defined only locally
in the state space. From this point of view the method of analysis of behaviour of the
system will be called nonlinear.
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Figure 1: Discrete parametric analysis of the system behaviour in the close neighborhood
of the perturbed motion.

2.2 Linear analysis of stability in close neighborhood of the mo-
ment of perturbation

In Fig. 1 an idea of the stability analysis in the neighborhood of the perturbed motion is
presented.

It is possible to control the system by analysis of eigenvalues calculated in a close
neighborhood of the trajectory. As a result of linearization of the Eq. (6) in the vicinity
of the perturbation point q(t), the Eq. (7) has the form

ẏ = A∗y , (10)

where A∗(q, q̇, q̈, ε,∆) is the Jacobian matrix. As can be seen, the coordinates of the
matrix A∗ depend on the control system parameters, Eq. (5), on the manipulator’s main
parameters, Eq. (14), and on the generalized coordinates of the nominal motion of the
manipulator’s links.

Analysis of stability of the column matrix (8) is reduced then to the analysis of its
eigenvalues. In order to perform this analysis, we have to generate the matrix A(t)
composed of the derivatives of the equations of perturbed motion, Eq. (6), as a function
of parameters of perturbations, Eq. (4), in the form

A(t) =
∂fi(yi0)

∂yi

(11)

for the set of conditions y0 for the given time instant and where Eq. (6) is ẏ = f(y, t). The
eigenvalues of the perturbation equations in the vicinity of the perturbation conditions
can be determined from the determinant

det[A(t) − ΛI] = 0 , (12)

where A(t) ∈ R2n×2n is the Jacobi matrix in the point y0, Λ – the vector of eigenvalues,
and I – the unit matrix, I ∈ R2n×2n.

The roots of Eq. (12) determine regions of stability. The solution in the close neigh-
borhood of the perturbation has tendency to be stable, if eigenvalues are negative or equal
to zero. Analysis of the eigenvalues in the vicinity of perturbation point allows to deter-
mine the behaviour of the system in close neighborhood of perturbation. This behaviour
shows tendency of the system to be / not to be stable. As a result we can determine
parametric regions of stability. Analysis of the eigenvalues in vicinity of the perturbation
point is linear analysis of stability.
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2.3 Poincaré maps

Algorithms for the numerical continuation of the periodic solutions are quite sophisticated
[2-22]. These algorithms have been extensively used for computing the forced response
and limit cycles of the nonlinear dynamical systems.

The Poincaré maps in the paper were used as an additional tool for graphical pre-
sentation of stability areas of the nonlinear system. In the vicinity of the Eq. (8), the
Poincaré map has been expressed as a set

{[ψi(t), ψ̇i(t)] |t=t0+k·T , i = 1, ..., n, k = 1, 2, ...} , (13)

where t0 is the moment of the motion perturbation, T – the period of the gripping device
motion along the trajectory of its motion.

As can be seen in Eq. (13), the procedure can not be used to control in the real-time
motion.

2.4 Parametric analysis of stability

The stability analysis has been conducted in order to determine the stability regions. It
has also consisted identification of influence of the manipulator’s model parameters to
a type of its behavior. These parameters can be divided into three groups. The first
one concentrates on the kinematics of the gripping device, the second one is related to
its motion trajectory, and the third one is discusses the stiffnesses and damping in the
driving systems and rolling of the kinematics pairs. A set of the parameters that can to
be investigated is

ε =

⎡
⎣ kinematics of gripping device

trajectory parameters
stiffness and damping

⎤
⎦ , (14)

where ε ∈ Rm. Some exemplary parameters of these groups have been presented in Sec-
tions 4.2 and 4.3. A selection of values of the set of parameters ε results in a defined type
of the manipulator’s behavior. Such a procedure allows finding a relationship between
the set ε, defined by Eq. (14), and the type of manipulator’s behavior, that is to say, the
character of its oscillations.

3 Maps of stability subregions, stability control

Bifurcation maps of stability regions, performed on the basis of Eqs. (9),(13), are called
maps of nonlinear stability of dynamical system. These maps have been made in function
of a set of parameters of the Eq. (14). On the other hand, if we assume a close neigh-
borhood of the matrix (8), then the linear analysis of stability in the vicinity of Eq. (8)
using analysis of eigenvalues can be assumed as an approximation. This approximation
affects manipulator’s stability regions in an unknown way. Although the linearization
helps determining whether a perturbation point is stable or not, it does not provide any
information regarding the size of the domain around the perturbation point, where the
conditions of stability holds. Therefore, in order to analyze the manipulator’s stability
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Figure 2: Ways of stability subregions analysis using map of the Lyapunov exponents for
the assumed range of the motion perturbations. Description: (l.-b.) denotes the linear
boundary of stability and (non-l.b.) the nonlinear one.

subregions, the analysis of stability regions for the nonlinear system using the linearized
equations of perturbation has been suggested.

Generally, the ranges of parametric stability of the nonlinear and linear system do not
correspond in the vicinity of the perturbation point. Therefore, it is proposed to separate
the common parts of these regions (stability subregions). We can distinguish the following
cases of the stability position of the nonlinear and linear system, (Fig. 2(a–c)):

(i) linear and nonlinear regions have a common part, Fig. 2a)

(ii) linear range inside the nonlinear range, Fig. 2b)

(iii) nonlinear range inside the linear range, Fig. 2c)

(iv) linear and nonlinear ranges without a common part: This situation is possible,
if the correcting control signal appears in the control system in spite of absence of the
motion perturbation, or, if the maps of the linear stability have been built for oversized
ranges of the motion perturbations.

Maps of the linear stability have been constructed for certain ranges of the pertur-
bations of the manipulator’s state vector. Assumed ranges of the perturbations have
decided about the size and position of the linear stability regions and about number of
stability maps in the control system memory. As a result we have received the so-called
stability subregions from the common part of the stability regions of the nonlinear system
(by use of the Lyapunov exponents) and the linearized equations of perturbation in close
neighborhood of the perturbation point (the vector of eigenvalues), Figs. 2(a–c).

Such a procedure allows avoiding of the effect of errors resulting from any simplification
assumed in the mathematical model of the manipulator, and, first of all, for generation
of the maps of the stability subregions as a function of ranges, in which the motion
perturbations can occur. For a given map, the size of the stability subregions is related
of course to the assumed perturbation ranges. In practice, in order to achieve the control
of motion, it is easy to calculate the vector of eigenvalues and determine the values of the
control parameters from the map of the stability subregions by simple measurement of
the real perturbations. Of course, the set of such maps of the subregions stability should
stay in the memory of the system control unit.
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Figure 3: a) Kinematics scheme of the manipulator. b) Model of the driving systems,
where ni denotes the gear ratio, ηi the mechanical efficiency of the gear.

4 Model of the manipulator 7MAR

The 7MAR industrial manipulator, Fig. 3a, whose main data can be found in [36-], has
been the subject to the numerical analysis. In order to determine the stability regions of
the nonlinear and linearized systems, it is necessary to build the mathematical model of
the manipulator and its drive systems. The model is important in the identification of
nonlinear areas of the stability [19-36]. In the proposed method, the stability subregions
that allow simplifications in the mathematical model have been separated from the com-
mon part of the stability regions of the nonlinear and the linearized systems. Generally
speaking, the smaller the stability subregion in the stability zone, the more simplifications
in the mathematical model, or, generation of a single map of stability regions for a higher
range of motion perturbations are possible. The electric and mechanical model of the
driving system of the manipulator covers the torsional flexibilities, viscous damping and
resistance to friction in the driving systems. In Fig. 3b, the model of the driving systems
is presented. It has been assumed that each link is driven by an independent driving sys-
tem and consists of an electric motor, a mechanical gear and driving shafts. A stator of
the driving motor of the i-th driving system is connected with the (i− 1)-th link. Energy
losses due to mechanical clearances in driving units and the gyroscopic effects between
motors and manipulator links have been neglected.

The kinetic energy of the manipulator is defined by

Ek =
1

2

[
q̇TD(q)q̇ + (q̇s)T Izrq̇

s
]

, (15)

where D(q) is matrix of inertia of the manipulator links, Izr represents matrix of moments
of inertia of rotors of the driving motors, power transfer shafts and rotating elements of
the reductions gears reduced to the corresponding generalized coordinates of the links, q is
vector of generalized coordinates of links, and, qs is the vector of generalized coordinates
of driving systems.

The potential energy of the manipulator has been expressed as a sum of the potential
energy of links, an object being manipulated, elements of power transfer systems and
flexibility in the driving systems. The potential energy of flexibility of driving systems is
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described by a matrix of resultant torsional stiffnesses of the power transfer systems. The
potential energy of the elements of the power transfer systems is equal to

Ed
p =

n∑
i=1

l∑
j=1

En
pij =

n∑
i=1

l1∑
j=1

En
pij +

n∑
i=1

l=l1+l2∑
j=l1+l

En
pij , (16)

where En
pij is the potential energy of the j-th element of the i-th manipulator driving

system; l1,l2 are numbers of elements of the driving system of the link i assigned to the
link (i − 1) and i, respectively.

The viscous friction in the driving system is a sum of the viscous friction in the driving
motor and the viscous friction in the remaining part of the driving system reduced to the
axis of the driving motor. Generally, for all the driving systems we have equations of
motion in the form

I∗zrθ̈ + N−1K(N−1θ − q) + Bθ̇ = Qd , (17)

where N is diagonal matrix of reduction gear ratios of driving systems; I∗

zr = Izr/N
2 is

the diagonal matrix of inertia of driving systems reduced to the corresponding axis of the
driving motors; θ̈ is vector of angular positions of rotors; Qd describes the vector of the
driving quantities of the links reduced to the axis of driving motors; K is the diagonal
matrix of stiffnesses in the driving systems reduced to the corresponding generalized
coordinates of the links; B represents diagonal matrix of viscous damping in the driving
systems (notation d in Fig. 3) that has been expressed as follows

B = diag

⎡
⎣fw1 +

w1∑
l=1

f l
u1, fwi +

wi∑
l=1

, f l
ui, . . . , fwn +

wn∑
l=1

f l
un

⎤
⎦ , (18)

where wi states the number of elements of the i-th driving system that are considered in
determination of viscous friction; fwi is coefficient of viscous damping in the i-th driving

motor;
wi∑
l=1

f l
w,un represents sum of coefficients of viscous damping of individual elements

of the power transfer system reduced to the axis of the i-th driving motor. Generally, the
equations of motion of the manipulator assume the form

Mq̈m + C(qm, q̇m) + Kgqm + G = Q , (19)

where M is matrix of masses and inertia of the manipulator, C matrix of effects of gyro-
scopic forces, centrifugal forces and energy dissipation. Kg is matrix of the manipulator
stiffnesses. The procedure of calculating the coefficients of stiffnesses can be found in [37];
G describes matrix of gravity forces; Q vector of the driving quantities; qm = [q, θ]T is
the vector of generalized coordinates of the manipulator.

The manipulator performs its technological task in two steps. The first one means
a motion in the first driving system and the second one a motion of the second and
third degree of freedom, whereas the first degree is stationary. During the second step
of motion, after introducing perturbations into second and third generalized coordinates
Eq. (3) it has form

qp = qp + ψp , q̇p = q̇p + ψ̇p , (20)
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Figure 4: Parameters of the trajectory of the gripping device motion.

where p = 1, 2, we obtain nonlinear first order differential equations of the perturbations

ẏ = aly + bl∆n + c2

n
(y) + d2

n
(y, ẏ) + c3

n
(y) + d3

n
(y, ẏ) (21)

where: al, bl are matrices of the linear parts of the equations of motion, c2
n(y), d2

n(y, ẏ),
c3

n(y), d3
n(y, ẏ) are matrices of second and third order of the nonlinearity (depending on

y and ẏ), and, ∆n is the vector of compensating drive in the second and third driving
system.

4.1 Trajectory and kinematics of the manipulator

The trajectory of the manipulator gripping device motion is presented in Fig. 4. We
assumed periodic trajectory of motion as a typical trajectory of industrial machines. The
position of the gripping device on its trajectory is described by an angle β in the local
coordinate system XlYl0l, see Fig. 4. It is possible to analyze the manipulator nominal
motion as a function of an angle β.

4.2 Analysis of stability, bifurcations and strange chaotic at-
tractors

The Lyapunov exponents are calculated for varying parameters of the velocity of the
gripping device motion along the motion trajectory and for control parameters, Eq. (14).
In the manipulator under consideration, the linear control has been applied. The model
of the control system has the form

∆M2 = aUs , ∆M3 = bUs , (22)

where ∆Mi, i = 2, 3 are the compensating driving quantities, Us is the controlled variable
(common for the second and third driving systems). The coefficient a is connected with
the second drive system, whereas the coefficient b with the third drive system. The
simplest algorithm of control allows showing, in an easy way, the spectrum of bifurcations
which can be found also for more complex control systems [19]. The analysis has been
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Figure 5: Stability as a function of control parameter Us and the kinematics of the gripping
device.

Figure 6: Spectrum of the Lyapunov exponents for the data presented in Figure 5 and
ω = 0.1406 rad/s.

conducted for the perturbations of positions and motion velocities of the second and third
link. Below, a few sample diagrams of stability regions for the angle of the gripping device
position β = 5.5 rad (perturbations occur at the instant when the gripping device is in this
position, Fig. 4), are shown. The data concerning the motion trajectory of the gripping
device are: K = 0.5 m, L = 0.231 m, R = 0.05 m, Q = 0.05 m. At the figures that
show the spectra of the Lyapunov exponents, the broken lines represent two Lyapunov
exponents.

In Fig. 5, a boundary of stability as a function of the control coefficient Us and
the angular velocity of the gripping device motion for the coefficients a = −45.6, b =
−0.003 is depicted. The ranges of parameters for which the system is stable and the
types of bifurcations which can occur during a loss of stability are seen. A selection of
control parameters from the stability region allows for maintaining the motion stability
in the Lyapunov sense. Each bifurcation allows one to identify vibrations that occur
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Figure 7: Spectrum of the Lyapunov exponents for the data presented in Figure 5 and
ω = 0.1519 rad/s.

Figure 8: Spectrum of the Lyapunov exponents for the data presented in Figure 5 and
ω0 = 0.1 rad/s.

after the stability loss of motion. Type I bifurcation is a saddle-node bifurcation. Type II
bifurcation is a double-period bifurcation. In this case, the stable periodic trajectory with
the period T is replaced by the trajectory with the period 2T . Type III bifurcation is a
secondary Hopf bifurcation [3-19-25]. In this case, the periodic solution transforms into
a quasi-periodic one and, therefore, this type of bifurcation is the least disadvantageous
from the point of view of the motion control.

Apart from this, it is seen in Fig. 5 that in the case of manipulators, bifurcations with
codimension 2 can be found. In the first case of a codimension 2 bifurcation, the stability
loss occurs due to the simultaneous occurrence of a saddle-node bifurcation and a double-
period bifurcation. As can be seen in Fig. 6, in the bifurcation point, a decomposition of
the 2-dimensional unstable torus that represents the quasi-periodic motion occurs. The
torus decomposes and the motion along it is replaced by a motion on a strange chaotic
attractor. In the second case, the stability loss is due to the simultaneous occurrence of
a double-period bifurcation and a secondary Hopf bifurcation.

The stability loss takes place through a decomposition of the 3-dimensional unstable
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Figure 9: Stability loss as a function of the dimension L, Figure 4, and the kinematics of
the gripping device motion.

torus, Fig. 7, that represents the quasi-periodic motion with three frequencies, between
which there are no rational relationships. This mechanism leads to motions on strange
chaotic attractors. As shown in Fig. 7, after the manipulator stability loss, a motion on
the strange chaotic attractor occurs, but only for a certain variable of the driving system
control. Above the value Us = 1.5108 Nm/N, the system does not have an attractor, and
the system shows a tendency towards the escape to infinity. An influence of the driving
system control variable Us on the stability and the character of motion after its stability
loss is visible. In Fig. 8, a spectrum of Lyapunov exponents for the data from Fig. 5 and
ω0 = 0.1 rad/s is presented.

The stability loss occurs through a saddle-node bifurcation and a secondary Hopf bi-
furcation. As a result of these bifurcations, unstable tori appear. As a result of their
decompositions, the quasi-periodic motion is replaced by a motion on the strange chaotic
attractor. This attractor is present in the whole unstable range of the system. In this case,
the system has an attractor and because of this the loss of stability is not so disadvan-
tageous. In Fig. 9, we can see a stability region and types of bifurcations as a function
of the quantity L of the position of the motion trajectory, Fig. 4, and the velocity of
motion of the gripping device along the trajectory of its motion. The following values of
the control coefficients have been assumed: Us = 1.51 Nm/N, a = −45.6, b = −0.003. An
influence of the position of the trajectory of motion of the gripping device on the manipu-
lator stability region and bifurcation type is visible. During the stability loss, it is possible
that all three types of bifurcation with codimension 1 and a bifurcation with codimension
2 for ω0 = 0.0316 rad/s and 0.129 rad/s will occur. The bifurcation with codimension 2 is
in this case a combination of a secondary Hopf bifurcation and a saddle-node bifurcation.
The stability loss occurs through the occurrence and simultaneous decomposition of the
unstable 3-dimensional torus. The spectrum of Lyapunov exponents for ω0 = 0.129 rad/s
is shown in Fig. 10. As can be seen, such ranges are possible to occur when the system
has a strange chaotic attractor, which however ceases quickly to exist. In practice, after
the stability loss, the system does not have an attractor. A similar situation concerns
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Figure 10: Spectrum of the Lyapunov exponents for the data presented in Figure 9 and
ω0 = 0.129 rad/s.

Figure 11: Spectrum of the Lyapunov exponents for the data presented in Figure 9 and
ω0 = 0.0316 rad/s.

the second bifurcation point with codimension 2 (ω0 = 0.0316 rad/s), whose vicinity is
shown in Fig. 11 in the form of the spectrum of Lyapunov exponents. The regions of
stability and the ways of the stability loss are visible. Fig. 12, an influence of the angu-
lar velocity of the gripping device motion along the periodic trajectory on the stability
regions and the ranges of occurrence of a strange chaotic attractor can be seen. Thus,
both the control coefficients and the control variable, as well as the kinematics of the
gripping device motion exert an influence on the way of the stability loss and the type of
vibrations that occur after it. Vibrations that occur in the system accompany each kind
of bifurcation. During the stability loss, a bifurcation with codimension 2 can occur. It is
interesting to find this kind of bifurcation for such a system. For the defined sets of model
parameters, two bifurcations occur at the same time. We tend to eliminate a possibility
of such phenomena through maintaining the operation of driving systems within ranges
of a stable motion.
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Figure 12: Spectrum of Lyapunov exponents for the data presented in Figure 9 and
L = 0.225 m.

4.3 Maps of stability and control

In Fig. 13, a spectrum of the Lyapunov exponents as a map is proposed. This kind of
map is introduced for choosing the values of control parameters for which the manipulator
remains stable. The presented regions of stability are the resultant regions of stability
obtained on the basis of the analysis of the nonlinear system (Poincaré maps, Eq. (13) and
Lyapunov exponents Eq. (9)) and by means of the linearized equations of perturbation,
Eq. (12). Besides, a way of transition from stability to a strange chaotic attractor as a
function of the angular velocity of the gripping device motion and the control variable is
presented. As can be seen, for a certain value of the angular velocity ω0 that depends
on the Us, only a region without a manipulator attractor occurs. Below this velocity, a
loss of stability leads to chaotic vibrations, regardless of the bifurcation type that causes
this stability loss. Thus, there is a certain boundary value of the velocity ω0 below which
the system has an attractor and in which region of the control system should maintain
the manipulator. A selection of values of the control parameters a, b from the range of a
strange chaotic attractor gives rise to chaotic vibrations of the manipulator. As can be seen
from the above-mentioned figures, the spectrum of Lyapunov exponents and the proposed
maps of Lyapunov exponents are useful for control. Measures of perturbations which
can occur during motion can be quickly presented in the form of the spectrum of their
eigenvalues (the Lyapunov exponents). Next, from the maps of the stability subregions,
it is easy to find for which values of control parameters the manipulator remains stable.
On the other hand, Fig. 14 shows stability regions and types of induced vibrations as a
function of the coefficients a and b for the control parameter Us = 1.51 Nm/N and the
angular velocity equal to 0.1 rad/s. In Fig. 14 two kinds of bifurcation with codimension 1
are possible: a saddle-node bifurcation and a secondary Hopf bifurcation. Apart from this,
a bifurcation with codimension 2 is possible as well. Such a bifurcation with codimension
2 is composed of a secondary Hopf bifurcation and a saddle-node bifurcation.

The stability loss in the Lyapunov sense, resulting from the occurrence of this bi-
furcation, consists in the appearance and decomposition of a 3-dimensional torus. The
quasi-periodic solution is unstable. Fig. 15 presents a map of Lyapunov exponents which
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Figure 13: Map of stability and regions of strange chaotic attractors as a function of
control parameter Us and kinematics of gripping device.

Figure 14: Stability losing as a function of control coefficients a and b.

shows a stable region and regions with a strange chaotic attractor or without it.

The ways of transition between the stable region and the remaining regions are inter-
esting. A loss of stability by a bifurcation with codimension 2 is possible, Fig. 14, then
vibrations occur on a strange chaotic attractor or the system escapes to infinity when
the manipulator does not have an attractor. A loss of stability by a bifurcation with a
codimension 1 leads to vibrations on a strange chaotic attractor.

In Fig. 16 a map which shows a way in which a stability loss leading to vibrations
on a strange chaotic attractor occurs, regardless of the bifurcation co-dimension and its
type, is shown. Narrow ranges of the values of control coefficients corresponding to the
region of a strange chaotic attractor cause that the system escapes easily to the region
where there is no attractor. In Fig. 17 a map of the regions of attractors for the gripping
device position angle β = 0.96 rad is shown. In this case, we have only the regions with a
strange chaotic attractor or the regions without an attractor. There is no stable region. A
perturbation of the manipulator motion for the ranges of control coefficients shown leads
to one of these regions and is particularly disadvantageous from the viewpoint of motion
control.
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Figure 15: Map of stability and regions of strange chaotic attractors as a function of
control coefficients a and b.

Figure 16: Map of stability and strange chaotic attractors regions as a function of the
dimension L, Figure 4, and the kinematics of the gripping device.

Vibrations that occur in the system accompany each kind of bifurcation. During the
stability loss of the model, a bifurcation with codimension 2 can occur. Finding this kind
of bifurcation for such system is interesting. For the defined sets of model parameters, two
bifurcations occur at the same time. The stability loss occurs through the decompositions
of unstable, multidimensional tori that represent quasi-periodic vibrations. As a result,
we obtain a strange chaotic attractor or a lack of the attractor, that is to say, a tendency of
the system to the escape to infinity. We tend to eliminate a possibility of such phenomena
occurrence through maintaining the operation of driving systems within ranges of a stable
motion. A proper selection of values of control coefficients that depend on a perturbation
allows for avoiding regions with a strange chaotic attractor or without it. In Fig. 18, an
algorithm for the manipulator motion control has been proposed. This kind of control
was qualified to nonlinear methods. The library in the control memory includes a set
of stability maps drawn as a function of selected model parameters and as a function of
perturbation ranges of individual degrees of freedom. The range of the coefficients a, b
and the driving system control variable Us and the positions of the trajectory, as well as
the kinematics of the gripping device motion exert an influence not only on the motion
stability but also on the character of motion after the stability loss. The stability loss of
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Figure 17: Regions of the strange chaotic attractors for the angle of the gripping device
position β = 0.96 rad (Figure 4).

Figure 18: Schemes of the control systems.

the system should be avoided, however if it occurs, we should aim at the situation where
the system has an attractor, even a chaotic one. It allows us to control the system during
the stability loss. An idea of controllers used in the control systems is presented in Fig.
19. The controller defines a value of the moment ∆M , Eq. (22), on the basis of the
coefficients a, b which are read from the correspond stability map. The control variable
Us is defined on the basis of measured perturbation ψ and some mathematical formula –
Fig. 19a) or from map of stability which correspond to the value of perturbation – Fig.
19b).

As can be seen from the figures included in the paper, the analysis of the spectrum
of Lyapunov exponents is a quick and simple method to parametric identify the stability
regions in the Lyapunov sense, the threat of a loss of stability, the way the stability loss
occurs and the kind of induced vibrations. From this point of view, it can be a valuable
tool to control the motion. The proposed maps of Lyapunov exponents allow one to find
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Figure 19: The controller loop with Usi linear depending on Ψi – a), and Usi taking from
the map of stability - b).

values of control parameters for given motion perturbations. The main advantages of
the proposed control rest on possibility of using this algorithm in real time despite of
nonlinear analysis of the system.

5 Conclusions

In the paper a method of control of the manipulator motion from the nonlinear dynamics
point of view is presented. The spectrum of Lyapunov exponents in the map form has
been proposed as a tool to control motion. The control of motion is based on the analysis
of stability regions of the nonlinear system and linearized equations of perturbation and
on the generation of the so-called maps of stability. These maps are used in order to
determine the values of control parameters, for which the manipulator remains stable
after introducing perturbations to its motion. The method permits to control the nominal
motion, to investigate the tendency towards a stability loss and to select a return way to
the stability region by avoiding the chaotic vibration induction.

A method allows also for the parametric analysis of mode of vibrations. The algorithm
allows for a theoretical analysis of an influence of manipulator model parameters on the
ways the manipulator stability is lost and on the regions in which a strange chaotic
attractor occurs or does not occur. A possibility of ways the strange chaotic attractor
appear have been presented as well.
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