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Abstract

We study different types of manipulators’ attractors and propose a motion con-

trol method. In our analysis the manipulator’s motion is perturbed and its stability

investigated using the nonlinear equations of perturbations and linearized equations

for practical control. In order to realize a practical control the common areas of

stability for nonlinear and linear models are identified. The maps of stability cal-

culated as functions of model parameters are proposed as a tool for motion control.

The spectrum of Lyapunov exponents is introduced as a practical measure of mo-

tion quality. The procedure allows choosing a way of reaching system stability in

order to avoid undesired attractors. Additionally, the possibility of the occurrence

of strange chaotic attractors in manipulators, ways they appear, and codimension

2 bifurcations have been analyzed.
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1 Introduction

The problems concerning mechanical vibrations of manipulators create an important issue
in the manipulator design and its motion control. Numerous papers devoted to mechanical
vibrations attempt answering the question, if and when vibrations of manipulator links
occur during its motion [12-36]. These considered both, the theoretical and practical
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aspects respectively, through investigations of single links, with a special emphasis on
their flexibility for example [24-38]. Such methods have been usually based on classical
equations of dynamics [20], most often in the form of equations of control [9-29-13].

The theory of nonlinear dynamics provides new possibilities of analysis of the dynamics
and control of mechanical systems. The investigations that have been conducted allowing
studies of new types of behavior in simple mechanical systems, such as vibrating oscillators
by means of theory of bifurcations [16-43], spectrum of Lyapunov exponents, Poincaré
maps [3-18]. In mechanical systems, chaos may lead to irregular operations and fatigue
failure [8-25-31]. From this point of view the control of chaos is understood as a way to
stabilize an unstable motion. Many papers show different ways of analysis of control in the
case of nonlinear dynamics of manipulators. For example the papers by Caracciolo have
proposed two control schemes that have been designed to achieve satisfactory performance
in the position and vibration controlling of two closed-chain planar manipulators with
flexible links. The control schemes have been designed, tuned and tested in simulation,
where the dynamic behavior of the flexible manipulators have been reproduced through a
fully coupled nonlinear model based on the finite element theory. The bifurcation control
scheme may be implemented either with or without a feedback. In the latter case, we
have the open-loop control. In static feedback control, the feedback is used to achieve
desirable nonlinear dynamics when locations of equilibria are known [1-39]. When these
locations are affected in the controlled system we can use dynamic feedback control [2-39].
In case of dynamic feedback control, it is possible to preserve the equilibrium positions in
the controlled system.

In [4] the authors have examined open-loop control of chaotic dynamics of a nonlinear
system by applying weakly periodic perturbations. One of the most popular approaches of
chaos control is the method named Ott-Grebogi-Yorke (OGY) and proposed in [15-26]. In
the OGY scheme, the control of chaos is understood as stabilization of unstable periodic
orbits embedded in a chaotic attractor by application of appropriate small perturbations
on a single system parameter. In order to achieve this task, the dynamics of the system is
followed by analyze of the Poincaré map. The unstable point of periodic orbit on Poincaré
map can be stabilized when the value of the modulus of the eigenvalues in the control
matrix [26] is smaller than one. In the Pyragas method of chaos control [28], stabilizing
of unstable periodic orbits has been applied by use of small time continuous control of a
parameter of a system, while it evolves in continuously understood time. This method is
known as delayed feedback control.

In [40] the authors have employed the time-delay feedback to anti-control of a perma-
nent magnet DC (PMDC) motor system for vibratory compactors, and hence implement
the new, electrically chaotic compactor. Firstly, the dynamic model of the anti-controlled
PMDC motor system and the proposed electrically chaotic compactor have been formu-
lated. Secondly, a nonlinear map have been derived in order to analyze the chaotic crite-
rion of the anti-controlled PMDC motor system. Anti-control of chaos of single time scale
brushless DC motor have been studied in [5]. Anti-control of chaos have been achieved by
addition of an external nonlinear term. Then, by addition of some coupling terms, using
the Lyapunov stability theorem and linearization of the error dynamics, the chaos syn-
chronization between a third-order brushless DC motor and a second-order Duffing system
have been presented. In the paper [23] a new technique of generating several independent



34 Przemyslaw Szumiński and Tomasz Kapitaniak

chaotic attractors by design a switching piecewise-constant controller in continuous-time
systems has been shown. The controller can create chaos using an anti-control of chaos
feedback. It has been shown that nonlinear continuous-time system can possess several
attractors, depending on the initial conditions.

More detailed information about the stability analysis based on different assumptions
can be found in [6-7-10-11-22-33-41].

The spectrum of Lyapunov exponents is a powerful tool of the analysis of the non-
linear system dynamics due to fact, its values easily illustrate exponential divergence or
convergence of the trajectory on attractor [19]. The exponents describe logarithmic mea-
sure of the sensitivity of the dynamical system on arbitrary small changes in the initial
conditions. Their computation is, however, time-consuming and generally complex for
most of the nonlinear dynamical systems with more than one degree of freedom. There-
fore, it is impossible directly employing this tool in the analysis of the motion. Some
algorithms for calculation and mathematical description of Lyapunov exponents can be
found in [17-18-19-25-42].

One of the reasons of limited use of nonlinear theories in technical applications is that,
the numerical computations are often regarded as impractical. In the present paper, we
suggest a method for the analysis of manipulator vibrations and nonlinear control based on
the analysis of stability regions in the stability maps of the nonlinear and linearized system.
The method allows controlling of the system in real time. Additionally, the presented
method allows analyzing effects of changes of various parameters on the manipulator
vibrations after a perturbation of its motion. We also propose a practical scheme of
control, based on the so-called stability maps. The first step of the controlling method
consists of the determination of critical values of manipulator’s parameters for which a
change in stability, i.e., a bifurcation, takes place. The idea of manipulator instability is
understood as instability in the sense of Lyapunov [14-19]. Determining of the spectrum
of Lyapunov exponents and the Poincaré maps have allowed successful investigation of
asymptotic behaviour of the phase flow in the neighborhood of the trajectory after a
perturbation. Then, nonlinear equations of the perturbations allow determination of the
nonlinear regions of stability of the manipulator motion.

However, such a determination of requires exhaustive mathematical computations and
cannot be used for control in practice. A linear stability of the manipulator is investigated
by calculating, in real time, the eigenvalues of the Jacobian matrix in a close neighbor-
hood of the perturbation point in the manipulator’s nominal motion. As a result, the
comparison of stability regions of the nonlinear and linearized systems allows determi-
nation of their common parts. For these subregions the ranges of system parameters
corresponding to them are determined. The motion control is based on the selection of
such control parameters for which the manipulator remains in the stability subregion. In
practice, for the assumed ranges of perturbations, the stability subregions are stored in
the control system memory in the form of a collection of maps. The actual measurements
of perturbations allow for a practical selection of the control parameters from the collec-
tion (performed for assumed trajectory parameters). The determination of values of the
parameters is ruled by a choice of the way the stability region is reached. It is connected
with a specified bifurcation type, which takes place during the transition of the motion
towards the stability region.
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The advantage of the proposed method is a possibility of real-time motion control by
analysis of nonlinear stability regions without any differentiation of the equations during
the manipulator motion. Additionally, possibilities of occurrence of chaotic vibrations in
the form of a strange chaotic attractor may be also investigated. The ways of a stability
loss are investigated through the analysis of the bifurcation types [21-25-27-30-35-36-].
A theoretical analysis of nonlinear dynamics performed for the 7MAR manipulator is
presented as an example.

2 Equations of perturbations, linear and nonlinear

stability

The issue of stability of the motion becomes important when the gripping device mo-
tion becomes unstable for some parameters of the manipulator’s model. Let us assume
that the vector of the generalized coordinates of the links (the state vector) q(t, ε) =
[q01(t), . . . , q0n(t)]T , where n is a number of degrees of freedom of the links, is a solution
to the autonomous equation of motion

q̇ = F(q, ε) , (1)

where the state vector q ∈ R2n, the parameter vector ε ∈ Rm, Eq. (14), and the vector
field F is defined for R2n ×Rm. Let us perturb this solution. The vector of perturbation
of the state vector has the form

ψ(t) = qp(t, δ) − q(t, ε) , (2)

where ε ∈ δ, δ is the vector of parameters of perturbation. A perturbation of motion of
an arbitrary generalized coordinate can be described as

ψi(t) = qpi(t, δ) − q0i(t, ε) , (3)

where ψi(t) describes a perturbation of the i-th generalized coordinate, qpi(t) is a per-
turbed motion of i-th generalized coordinate. The distance of the solution of the ma-
nipulator perturbed motion from the solution of the nominal motion is defined by y(t).
Generally, the vector of perturbations which can appear during motion can be presented
as

y =
[

ψ1, ψ̇1, . . . , ψi, ψ̇i, . . . , ψn, ψ̇n

]T

. (4)

Deflections of positions from the nominal motion and their time derivatives that appear
in the mechanical system of the manipulator are compensated for by changes in values
of the driving torques of the nominal motion. Let us write the vector of compensating
driving quantities as

∆ = [control system 1, . . . , control system n]T . (5)

The compensation vector ∆ is in practice a set of parameters of the control systems.
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Substituting Eqs. (2) and (4), their derivatives and a vector of compensating quantities
∆ into the equations of motion, we obtain the dynamics equations of the perturbed motion

ẏ = Ay + B∆ + N , (6)

where y, N ∈ R2n, A(q, q̇, q̈, ε) ∈ R2n×2n, B(q) ∈ R2n×n, ∆ ∈ Rn. A Taylor series
has been used to expand the trigonometric functions including components of the vector
y. A degree of nonlinearity of Eq. (6) depends on the form of the series expansion
of the trigonometric functions. The matrix N(q, q̇, q̈,y) includes the nonlinear terms
of the equations of motion (6). After the perturbation of the manipulator operation, its
nominal motion has been eliminated from the perturbation equations due to the extraction
of classical equations of dynamics of the nominal motion from them. Next, the equations
of dynamics written for the nominal motion of the manipulator has been extracted from
the perturbation equations, taking thus into consideration the manipulator’s motion after
perturbation. It is possible, due to the fact, the nominal motion is compensated for
through the nominal driving torques of the drive systems. As a result Eq. (6) received
the form

ẏ = G(y,q, q̇, q̈, ε,∆) , (7)

where y ∈ R2n, the parameter vector ε ∈ Rm, ∆ ∈ Rn, the space function G ∈ R2n×Rn×
Rm. One from the solutions of Eq. (6) has the form Eq. (8). This solution corresponds
to the moment of motion perturbation.

2.1 Stability in the sense of Lyapunov

The problem of stability in the Lyapunov sense [18-30] of the gripping device motion
is formulated as an analysis of stability of the equations of the perturbed motion, as a
function of ε,∆

y = 0 . (8)

Lyapunov exponents associated with a trajectory are a measure of the average rates
of expansion and contraction of the trajectories surrounding it. They are asymptotic
quantities, defined locally in the state space, and describe the exponential rate, at which
a perturbation to a trajectory of a system grows or decays with time at a certain location
in the state space. The Lyapunov exponents calculated for the nonlinear system are
described by [19-34]

λi = lim
t→∞

1

t
ln |mi(t)| , i = 1, ..., 2n , (9)

where all of the mi are the eigenvalues of matrix of the fundamental solutions of linearized
equation of perturbation. The procedure used to determine the Lyapunov exponents can
be considered as a generalization of linear stability analysis. The Lyapunov exponents are
global quantities associated with an attractor even though they are defined only locally
in the state space. From this point of view the method of analysis of behaviour of the
system will be called nonlinear.
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Figure 1: Discrete parametric analysis of the system behaviour in the close neighborhood
of the perturbed motion.

2.2 Linear analysis of stability in close neighborhood of the mo-

ment of perturbation

In Fig. 1 an idea of the stability analysis in the neighborhood of the perturbed motion is
presented.

It is possible to control the system by analysis of eigenvalues calculated in a close
neighborhood of the trajectory. As a result of linearization of the Eq. (6) in the vicinity
of the perturbation point q(t), the Eq. (7) has the form

ẏ = A∗y , (10)

where A∗(q, q̇, q̈, ε,∆) is the Jacobian matrix. As can be seen, the coordinates of the
matrix A∗ depend on the control system parameters, Eq. (5), on the manipulator’s main
parameters, Eq. (14), and on the generalized coordinates of the nominal motion of the
manipulator’s links.

Analysis of stability of the column matrix (8) is reduced then to the analysis of its
eigenvalues. In order to perform this analysis, we have to generate the matrix A(t)
composed of the derivatives of the equations of perturbed motion, Eq. (6), as a function
of parameters of perturbations, Eq. (4), in the form

A(t) =
∂fi(yi0)

∂yi

(11)

for the set of conditions y0 for the given time instant and where Eq. (6) is ẏ = f(y, t). The
eigenvalues of the perturbation equations in the vicinity of the perturbation conditions
can be determined from the determinant

det[A(t) − ΛI] = 0 , (12)

where A(t) ∈ R2n×2n is the Jacobi matrix in the point y0, Λ – the vector of eigenvalues,
and I – the unit matrix, I ∈ R2n×2n.

The roots of Eq. (12) determine regions of stability. The solution in the close neigh-
borhood of the perturbation has tendency to be stable, if eigenvalues are negative or equal
to zero. Analysis of the eigenvalues in the vicinity of perturbation point allows to deter-
mine the behaviour of the system in close neighborhood of perturbation. This behaviour
shows tendency of the system to be / not to be stable. As a result we can determine
parametric regions of stability. Analysis of the eigenvalues in vicinity of the perturbation
point is linear analysis of stability.



38 Przemyslaw Szumiński and Tomasz Kapitaniak

2.3 Poincaré maps

Algorithms for the numerical continuation of the periodic solutions are quite sophisticated
[2-22]. These algorithms have been extensively used for computing the forced response
and limit cycles of the nonlinear dynamical systems.

The Poincaré maps in the paper were used as an additional tool for graphical pre-
sentation of stability areas of the nonlinear system. In the vicinity of the Eq. (8), the
Poincaré map has been expressed as a set

{[ψi(t), ψ̇i(t)] |t=t0+k·T , i = 1, ..., n, k = 1, 2, ...} , (13)

where t0 is the moment of the motion perturbation, T – the period of the gripping device
motion along the trajectory of its motion.

As can be seen in Eq. (13), the procedure can not be used to control in the real-time
motion.

2.4 Parametric analysis of stability

The stability analysis has been conducted in order to determine the stability regions. It
has also consisted identification of influence of the manipulator’s model parameters to
a type of its behavior. These parameters can be divided into three groups. The first
one concentrates on the kinematics of the gripping device, the second one is related to
its motion trajectory, and the third one is discusses the stiffnesses and damping in the
driving systems and rolling of the kinematics pairs. A set of the parameters that can to
be investigated is

ε =





kinematics of gripping device
trajectory parameters
stiffness and damping



 , (14)

where ε ∈ Rm. Some exemplary parameters of these groups have been presented in Sec-
tions 4.2 and 4.3. A selection of values of the set of parameters ε results in a defined type
of the manipulator’s behavior. Such a procedure allows finding a relationship between
the set ε, defined by Eq. (14), and the type of manipulator’s behavior, that is to say, the
character of its oscillations.

3 Maps of stability subregions, stability control

Bifurcation maps of stability regions, performed on the basis of Eqs. (9),(13), are called
maps of nonlinear stability of dynamical system. These maps have been made in function
of a set of parameters of the Eq. (14). On the other hand, if we assume a close neigh-
borhood of the matrix (8), then the linear analysis of stability in the vicinity of Eq. (8)
using analysis of eigenvalues can be assumed as an approximation. This approximation
affects manipulator’s stability regions in an unknown way. Although the linearization
helps determining whether a perturbation point is stable or not, it does not provide any
information regarding the size of the domain around the perturbation point, where the
conditions of stability holds. Therefore, in order to analyze the manipulator’s stability
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Figure 2: Ways of stability subregions analysis using map of the Lyapunov exponents for
the assumed range of the motion perturbations. Description: (l.-b.) denotes the linear
boundary of stability and (non-l.b.) the nonlinear one.

subregions, the analysis of stability regions for the nonlinear system using the linearized
equations of perturbation has been suggested.

Generally, the ranges of parametric stability of the nonlinear and linear system do not
correspond in the vicinity of the perturbation point. Therefore, it is proposed to separate
the common parts of these regions (stability subregions). We can distinguish the following
cases of the stability position of the nonlinear and linear system, (Fig. 2(a–c)):

(i) linear and nonlinear regions have a common part, Fig. 2a)

(ii) linear range inside the nonlinear range, Fig. 2b)

(iii) nonlinear range inside the linear range, Fig. 2c)

(iv) linear and nonlinear ranges without a common part: This situation is possible,
if the correcting control signal appears in the control system in spite of absence of the
motion perturbation, or, if the maps of the linear stability have been built for oversized
ranges of the motion perturbations.

Maps of the linear stability have been constructed for certain ranges of the pertur-
bations of the manipulator’s state vector. Assumed ranges of the perturbations have
decided about the size and position of the linear stability regions and about number of
stability maps in the control system memory. As a result we have received the so-called
stability subregions from the common part of the stability regions of the nonlinear system
(by use of the Lyapunov exponents) and the linearized equations of perturbation in close
neighborhood of the perturbation point (the vector of eigenvalues), Figs. 2(a–c).

Such a procedure allows avoiding of the effect of errors resulting from any simplification
assumed in the mathematical model of the manipulator, and, first of all, for generation
of the maps of the stability subregions as a function of ranges, in which the motion
perturbations can occur. For a given map, the size of the stability subregions is related
of course to the assumed perturbation ranges. In practice, in order to achieve the control
of motion, it is easy to calculate the vector of eigenvalues and determine the values of the
control parameters from the map of the stability subregions by simple measurement of
the real perturbations. Of course, the set of such maps of the subregions stability should
stay in the memory of the system control unit.
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Figure 3: a) Kinematics scheme of the manipulator. b) Model of the driving systems,
where ni denotes the gear ratio, ηi the mechanical efficiency of the gear.

4 Model of the manipulator 7MAR

The 7MAR industrial manipulator, Fig. 3a, whose main data can be found in [36-], has
been the subject to the numerical analysis. In order to determine the stability regions of
the nonlinear and linearized systems, it is necessary to build the mathematical model of
the manipulator and its drive systems. The model is important in the identification of
nonlinear areas of the stability [19-36]. In the proposed method, the stability subregions
that allow simplifications in the mathematical model have been separated from the com-
mon part of the stability regions of the nonlinear and the linearized systems. Generally
speaking, the smaller the stability subregion in the stability zone, the more simplifications
in the mathematical model, or, generation of a single map of stability regions for a higher
range of motion perturbations are possible. The electric and mechanical model of the
driving system of the manipulator covers the torsional flexibilities, viscous damping and
resistance to friction in the driving systems. In Fig. 3b, the model of the driving systems
is presented. It has been assumed that each link is driven by an independent driving sys-
tem and consists of an electric motor, a mechanical gear and driving shafts. A stator of
the driving motor of the i-th driving system is connected with the (i− 1)-th link. Energy
losses due to mechanical clearances in driving units and the gyroscopic effects between
motors and manipulator links have been neglected.

The kinetic energy of the manipulator is defined by

Ek =
1

2

[

q̇TD(q)q̇ + (q̇s)T Izrq̇
s
]

, (15)

where D(q) is matrix of inertia of the manipulator links, Izr represents matrix of moments
of inertia of rotors of the driving motors, power transfer shafts and rotating elements of
the reductions gears reduced to the corresponding generalized coordinates of the links, q is
vector of generalized coordinates of links, and, qs is the vector of generalized coordinates
of driving systems.

The potential energy of the manipulator has been expressed as a sum of the potential
energy of links, an object being manipulated, elements of power transfer systems and
flexibility in the driving systems. The potential energy of flexibility of driving systems is
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described by a matrix of resultant torsional stiffnesses of the power transfer systems. The
potential energy of the elements of the power transfer systems is equal to

Ed
p =

n
∑

i=1

l
∑

j=1

En
pij =

n
∑

i=1

l1
∑

j=1

En
pij +

n
∑

i=1

l=l1+l2
∑

j=l1+l

En
pij , (16)

where En
pij is the potential energy of the j-th element of the i-th manipulator driving

system; l1,l2 are numbers of elements of the driving system of the link i assigned to the
link (i− 1) and i, respectively.

The viscous friction in the driving system is a sum of the viscous friction in the driving
motor and the viscous friction in the remaining part of the driving system reduced to the
axis of the driving motor. Generally, for all the driving systems we have equations of
motion in the form

I∗zrθ̈ + N−1K(N−1θ − q) + Bθ̇ = Qd , (17)

where N is diagonal matrix of reduction gear ratios of driving systems; I∗zr = Izr/N
2 is

the diagonal matrix of inertia of driving systems reduced to the corresponding axis of the
driving motors; θ̈ is vector of angular positions of rotors; Qd describes the vector of the
driving quantities of the links reduced to the axis of driving motors; K is the diagonal
matrix of stiffnesses in the driving systems reduced to the corresponding generalized
coordinates of the links; B represents diagonal matrix of viscous damping in the driving
systems (notation d in Fig. 3) that has been expressed as follows

B = diag



fw1 +

w1

∑

l=1

f l
u1, fwi +

wi

∑

l=1

, f l
ui, . . . , fwn +

wn

∑

l=1

f l
un



 , (18)

where wi states the number of elements of the i-th driving system that are considered in
determination of viscous friction; fwi is coefficient of viscous damping in the i-th driving

motor;
wi

∑

l=1

f l
w,un represents sum of coefficients of viscous damping of individual elements

of the power transfer system reduced to the axis of the i-th driving motor. Generally, the
equations of motion of the manipulator assume the form

Mq̈m + C(qm, q̇m) + Kgqm + G = Q , (19)

where M is matrix of masses and inertia of the manipulator, C matrix of effects of gyro-
scopic forces, centrifugal forces and energy dissipation. Kg is matrix of the manipulator
stiffnesses. The procedure of calculating the coefficients of stiffnesses can be found in [37];
G describes matrix of gravity forces; Q vector of the driving quantities; qm = [q, θ]T is
the vector of generalized coordinates of the manipulator.

The manipulator performs its technological task in two steps. The first one means
a motion in the first driving system and the second one a motion of the second and
third degree of freedom, whereas the first degree is stationary. During the second step
of motion, after introducing perturbations into second and third generalized coordinates
Eq. (3) it has form

qp = qp + ψp , q̇p = q̇p + ψ̇p , (20)
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Figure 4: Parameters of the trajectory of the gripping device motion.

where p = 1, 2, we obtain nonlinear first order differential equations of the perturbations

ẏ = aly + bl∆n + c2

n
(y) + d2

n
(y, ẏ) + c3

n
(y) + d3

n
(y, ẏ) (21)

where: al, bl are matrices of the linear parts of the equations of motion, c2
n(y), d2

n(y, ẏ),
c3

n(y), d3
n(y, ẏ) are matrices of second and third order of the nonlinearity (depending on

y and ẏ), and, ∆n is the vector of compensating drive in the second and third driving
system.

4.1 Trajectory and kinematics of the manipulator

The trajectory of the manipulator gripping device motion is presented in Fig. 4. We
assumed periodic trajectory of motion as a typical trajectory of industrial machines. The
position of the gripping device on its trajectory is described by an angle β in the local
coordinate system XlYl0l, see Fig. 4. It is possible to analyze the manipulator nominal
motion as a function of an angle β.

4.2 Analysis of stability, bifurcations and strange chaotic at-

tractors

The Lyapunov exponents are calculated for varying parameters of the velocity of the
gripping device motion along the motion trajectory and for control parameters, Eq. (14).
In the manipulator under consideration, the linear control has been applied. The model
of the control system has the form

∆M2 = aUs , ∆M3 = bUs , (22)

where ∆Mi, i = 2, 3 are the compensating driving quantities, Us is the controlled variable
(common for the second and third driving systems). The coefficient a is connected with
the second drive system, whereas the coefficient b with the third drive system. The
simplest algorithm of control allows showing, in an easy way, the spectrum of bifurcations
which can be found also for more complex control systems [19]. The analysis has been
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Figure 5: Stability as a function of control parameter Us and the kinematics of the gripping
device.

Figure 6: Spectrum of the Lyapunov exponents for the data presented in Figure 5 and
ω = 0.1406 rad/s.

conducted for the perturbations of positions and motion velocities of the second and third
link. Below, a few sample diagrams of stability regions for the angle of the gripping device
position β = 5.5 rad (perturbations occur at the instant when the gripping device is in this
position, Fig. 4), are shown. The data concerning the motion trajectory of the gripping
device are: K = 0.5 m, L = 0.231 m, R = 0.05 m, Q = 0.05 m. At the figures that
show the spectra of the Lyapunov exponents, the broken lines represent two Lyapunov
exponents.

In Fig. 5, a boundary of stability as a function of the control coefficient Us and
the angular velocity of the gripping device motion for the coefficients a = −45.6, b =
−0.003 is depicted. The ranges of parameters for which the system is stable and the
types of bifurcations which can occur during a loss of stability are seen. A selection of
control parameters from the stability region allows for maintaining the motion stability
in the Lyapunov sense. Each bifurcation allows one to identify vibrations that occur
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Figure 7: Spectrum of the Lyapunov exponents for the data presented in Figure 5 and
ω = 0.1519 rad/s.

Figure 8: Spectrum of the Lyapunov exponents for the data presented in Figure 5 and
ω0 = 0.1 rad/s.

after the stability loss of motion. Type I bifurcation is a saddle-node bifurcation. Type II
bifurcation is a double-period bifurcation. In this case, the stable periodic trajectory with
the period T is replaced by the trajectory with the period 2T . Type III bifurcation is a
secondary Hopf bifurcation [3-19-25]. In this case, the periodic solution transforms into
a quasi-periodic one and, therefore, this type of bifurcation is the least disadvantageous
from the point of view of the motion control.

Apart from this, it is seen in Fig. 5 that in the case of manipulators, bifurcations with
codimension 2 can be found. In the first case of a codimension 2 bifurcation, the stability
loss occurs due to the simultaneous occurrence of a saddle-node bifurcation and a double-
period bifurcation. As can be seen in Fig. 6, in the bifurcation point, a decomposition of
the 2-dimensional unstable torus that represents the quasi-periodic motion occurs. The
torus decomposes and the motion along it is replaced by a motion on a strange chaotic
attractor. In the second case, the stability loss is due to the simultaneous occurrence of
a double-period bifurcation and a secondary Hopf bifurcation.

The stability loss takes place through a decomposition of the 3-dimensional unstable
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Figure 9: Stability loss as a function of the dimension L, Figure 4, and the kinematics of
the gripping device motion.

torus, Fig. 7, that represents the quasi-periodic motion with three frequencies, between
which there are no rational relationships. This mechanism leads to motions on strange
chaotic attractors. As shown in Fig. 7, after the manipulator stability loss, a motion on
the strange chaotic attractor occurs, but only for a certain variable of the driving system
control. Above the value Us = 1.5108 Nm/N, the system does not have an attractor, and
the system shows a tendency towards the escape to infinity. An influence of the driving
system control variable Us on the stability and the character of motion after its stability
loss is visible. In Fig. 8, a spectrum of Lyapunov exponents for the data from Fig. 5 and
ω0 = 0.1 rad/s is presented.

The stability loss occurs through a saddle-node bifurcation and a secondary Hopf bi-
furcation. As a result of these bifurcations, unstable tori appear. As a result of their
decompositions, the quasi-periodic motion is replaced by a motion on the strange chaotic
attractor. This attractor is present in the whole unstable range of the system. In this case,
the system has an attractor and because of this the loss of stability is not so disadvan-
tageous. In Fig. 9, we can see a stability region and types of bifurcations as a function
of the quantity L of the position of the motion trajectory, Fig. 4, and the velocity of
motion of the gripping device along the trajectory of its motion. The following values of
the control coefficients have been assumed: Us = 1.51 Nm/N, a = −45.6, b = −0.003. An
influence of the position of the trajectory of motion of the gripping device on the manipu-
lator stability region and bifurcation type is visible. During the stability loss, it is possible
that all three types of bifurcation with codimension 1 and a bifurcation with codimension
2 for ω0 = 0.0316 rad/s and 0.129 rad/s will occur. The bifurcation with codimension 2 is
in this case a combination of a secondary Hopf bifurcation and a saddle-node bifurcation.
The stability loss occurs through the occurrence and simultaneous decomposition of the
unstable 3-dimensional torus. The spectrum of Lyapunov exponents for ω0 = 0.129 rad/s
is shown in Fig. 10. As can be seen, such ranges are possible to occur when the system
has a strange chaotic attractor, which however ceases quickly to exist. In practice, after
the stability loss, the system does not have an attractor. A similar situation concerns
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Figure 10: Spectrum of the Lyapunov exponents for the data presented in Figure 9 and
ω0 = 0.129 rad/s.

Figure 11: Spectrum of the Lyapunov exponents for the data presented in Figure 9 and
ω0 = 0.0316 rad/s.

the second bifurcation point with codimension 2 (ω0 = 0.0316 rad/s), whose vicinity is
shown in Fig. 11 in the form of the spectrum of Lyapunov exponents. The regions of
stability and the ways of the stability loss are visible. Fig. 12, an influence of the angu-
lar velocity of the gripping device motion along the periodic trajectory on the stability
regions and the ranges of occurrence of a strange chaotic attractor can be seen. Thus,
both the control coefficients and the control variable, as well as the kinematics of the
gripping device motion exert an influence on the way of the stability loss and the type of
vibrations that occur after it. Vibrations that occur in the system accompany each kind
of bifurcation. During the stability loss, a bifurcation with codimension 2 can occur. It is
interesting to find this kind of bifurcation for such a system. For the defined sets of model
parameters, two bifurcations occur at the same time. We tend to eliminate a possibility
of such phenomena through maintaining the operation of driving systems within ranges
of a stable motion.
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Figure 12: Spectrum of Lyapunov exponents for the data presented in Figure 9 and
L = 0.225 m.

4.3 Maps of stability and control

In Fig. 13, a spectrum of the Lyapunov exponents as a map is proposed. This kind of
map is introduced for choosing the values of control parameters for which the manipulator
remains stable. The presented regions of stability are the resultant regions of stability
obtained on the basis of the analysis of the nonlinear system (Poincaré maps, Eq. (13) and
Lyapunov exponents Eq. (9)) and by means of the linearized equations of perturbation,
Eq. (12). Besides, a way of transition from stability to a strange chaotic attractor as a
function of the angular velocity of the gripping device motion and the control variable is
presented. As can be seen, for a certain value of the angular velocity ω0 that depends
on the Us, only a region without a manipulator attractor occurs. Below this velocity, a
loss of stability leads to chaotic vibrations, regardless of the bifurcation type that causes
this stability loss. Thus, there is a certain boundary value of the velocity ω0 below which
the system has an attractor and in which region of the control system should maintain
the manipulator. A selection of values of the control parameters a, b from the range of a
strange chaotic attractor gives rise to chaotic vibrations of the manipulator. As can be seen
from the above-mentioned figures, the spectrum of Lyapunov exponents and the proposed
maps of Lyapunov exponents are useful for control. Measures of perturbations which
can occur during motion can be quickly presented in the form of the spectrum of their
eigenvalues (the Lyapunov exponents). Next, from the maps of the stability subregions,
it is easy to find for which values of control parameters the manipulator remains stable.
On the other hand, Fig. 14 shows stability regions and types of induced vibrations as a
function of the coefficients a and b for the control parameter Us = 1.51 Nm/N and the
angular velocity equal to 0.1 rad/s. In Fig. 14 two kinds of bifurcation with codimension 1
are possible: a saddle-node bifurcation and a secondary Hopf bifurcation. Apart from this,
a bifurcation with codimension 2 is possible as well. Such a bifurcation with codimension
2 is composed of a secondary Hopf bifurcation and a saddle-node bifurcation.

The stability loss in the Lyapunov sense, resulting from the occurrence of this bi-
furcation, consists in the appearance and decomposition of a 3-dimensional torus. The
quasi-periodic solution is unstable. Fig. 15 presents a map of Lyapunov exponents which
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Figure 13: Map of stability and regions of strange chaotic attractors as a function of
control parameter Us and kinematics of gripping device.

Figure 14: Stability losing as a function of control coefficients a and b.

shows a stable region and regions with a strange chaotic attractor or without it.

The ways of transition between the stable region and the remaining regions are inter-
esting. A loss of stability by a bifurcation with codimension 2 is possible, Fig. 14, then
vibrations occur on a strange chaotic attractor or the system escapes to infinity when
the manipulator does not have an attractor. A loss of stability by a bifurcation with a
codimension 1 leads to vibrations on a strange chaotic attractor.

In Fig. 16 a map which shows a way in which a stability loss leading to vibrations
on a strange chaotic attractor occurs, regardless of the bifurcation co-dimension and its
type, is shown. Narrow ranges of the values of control coefficients corresponding to the
region of a strange chaotic attractor cause that the system escapes easily to the region
where there is no attractor. In Fig. 17 a map of the regions of attractors for the gripping
device position angle β = 0.96 rad is shown. In this case, we have only the regions with a
strange chaotic attractor or the regions without an attractor. There is no stable region. A
perturbation of the manipulator motion for the ranges of control coefficients shown leads
to one of these regions and is particularly disadvantageous from the viewpoint of motion
control.
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Figure 15: Map of stability and regions of strange chaotic attractors as a function of
control coefficients a and b.

Figure 16: Map of stability and strange chaotic attractors regions as a function of the
dimension L, Figure 4, and the kinematics of the gripping device.

Vibrations that occur in the system accompany each kind of bifurcation. During the
stability loss of the model, a bifurcation with codimension 2 can occur. Finding this kind
of bifurcation for such system is interesting. For the defined sets of model parameters, two
bifurcations occur at the same time. The stability loss occurs through the decompositions
of unstable, multidimensional tori that represent quasi-periodic vibrations. As a result,
we obtain a strange chaotic attractor or a lack of the attractor, that is to say, a tendency of
the system to the escape to infinity. We tend to eliminate a possibility of such phenomena
occurrence through maintaining the operation of driving systems within ranges of a stable
motion. A proper selection of values of control coefficients that depend on a perturbation
allows for avoiding regions with a strange chaotic attractor or without it. In Fig. 18, an
algorithm for the manipulator motion control has been proposed. This kind of control
was qualified to nonlinear methods. The library in the control memory includes a set
of stability maps drawn as a function of selected model parameters and as a function of
perturbation ranges of individual degrees of freedom. The range of the coefficients a, b
and the driving system control variable Us and the positions of the trajectory, as well as
the kinematics of the gripping device motion exert an influence not only on the motion
stability but also on the character of motion after the stability loss. The stability loss of
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Figure 17: Regions of the strange chaotic attractors for the angle of the gripping device
position β = 0.96 rad (Figure 4).

Figure 18: Schemes of the control systems.

the system should be avoided, however if it occurs, we should aim at the situation where
the system has an attractor, even a chaotic one. It allows us to control the system during
the stability loss. An idea of controllers used in the control systems is presented in Fig.
19. The controller defines a value of the moment ∆M , Eq. (22), on the basis of the
coefficients a, b which are read from the correspond stability map. The control variable
Us is defined on the basis of measured perturbation ψ and some mathematical formula –
Fig. 19a) or from map of stability which correspond to the value of perturbation – Fig.
19b).

As can be seen from the figures included in the paper, the analysis of the spectrum
of Lyapunov exponents is a quick and simple method to parametric identify the stability
regions in the Lyapunov sense, the threat of a loss of stability, the way the stability loss
occurs and the kind of induced vibrations. From this point of view, it can be a valuable
tool to control the motion. The proposed maps of Lyapunov exponents allow one to find
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Figure 19: The controller loop with Usi linear depending on Ψi – a), and Usi taking from
the map of stability - b).

values of control parameters for given motion perturbations. The main advantages of
the proposed control rest on possibility of using this algorithm in real time despite of
nonlinear analysis of the system.

5 Conclusions

In the paper a method of control of the manipulator motion from the nonlinear dynamics
point of view is presented. The spectrum of Lyapunov exponents in the map form has
been proposed as a tool to control motion. The control of motion is based on the analysis
of stability regions of the nonlinear system and linearized equations of perturbation and
on the generation of the so-called maps of stability. These maps are used in order to
determine the values of control parameters, for which the manipulator remains stable
after introducing perturbations to its motion. The method permits to control the nominal
motion, to investigate the tendency towards a stability loss and to select a return way to
the stability region by avoiding the chaotic vibration induction.

A method allows also for the parametric analysis of mode of vibrations. The algorithm
allows for a theoretical analysis of an influence of manipulator model parameters on the
ways the manipulator stability is lost and on the regions in which a strange chaotic
attractor occurs or does not occur. A possibility of ways the strange chaotic attractor
appear have been presented as well.
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