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Abstract

Von Neumann established that discretized algebraic equations must be consistent

with the differential equations, and must be stable in order to obtain convergent

numerical solutions for the given differential equations. The ”stability” is required

to satisfactorily approximate a differential derivative by its discretized form, such

as a finite-difference scheme, in order to compute in computers. His criterion is

the necessary and sufficient condition only for steady or equilibrium problems. It

is also a necessary condition, but not a sufficient condition for unsteady transient

problems; additional care is required to ensure the accuracy of unsteady solutions.
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1 Introduction

Systems of ordinary differential equations that exhibit chaotic responses have yet to be cor-
rectly integrated. So far no convergent computational results have ever been determined
for chaotic differential equations, since the truncation errors introduced by discretized
numerical methods are amplified for unstable computations. Numerical methods usually
convert continuous differential equations to a set of algebraic equations to be solved by
computers. Von Neumann established that discretized algebraic equations must be con-

sistent with the differential equations, and must be stable in order to obtain convergent
numerical solutions for the given differential equations. A typical property of chaotic
differential equations is that they are unstable. It is not straightforward to check the
consistence and stability of a numerical computation. In particular, it lacks a practical
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way to conveniently check the convergence of numerical results for non-linear differential
equations that a linear stability analysis may not yield desirable and confident conclusions.

Parker and Chua [1] suggested a practical way of judging the accuracy of the numerical
results from a non-linear dynamical system is to use two or more different methods to
solve the same problem. If the two solutions agree then they can be assumed accurate.
Viana [2] proposed to solve the same problem in two or more different machines to ensure
the convergent results. Both approaches are testing to ensure that truncation errors will
not overwhelm the correct solutions. The same propose can be achieved by solving the
problem in one machine and one method, but two different integration time steps [3,
4]. All three ways are easy to apply, but the agreement of two computational results by
either of these ways is only a necessary condition, and is not sufficient. Typical examples,
well known to all graduate students in thermal science, are unsteady heat conduction
problems; even though, the heat equation is linear. They demonstrated the additional
difficult of checking convergence for unsteady problems.

Without knowing it is not a sufficient condition, Lorenz [5] mistakenly concluded that
his solution for his 1990 model was convergent initially for thirty years! This contradicts
to the fact that the initial period of the Lorenz solution for his 1990 model is mixed with
many unstable and divergent sections with some stable sections. One cannot claim that
the mixture of errors in many unstable computations with some short time convergent
computations is a correct solution, since the differential directives cannot be replaced by
their computable discretized forms unstable periods. We will explain why the convenient
ways to check convergence of unsteady computation is insufficient below and followed by
numerical examples.

2 Mathematical Explanation

We will solve a set of, or a differential equation

du

dt
= f (u, t) (1)

whose exact solution is u = u (t). Let’s use Xi(t) (i = 1, 2) denotes the computational
results for two different methods, or two different machines, or two different integration
time steps; Ei(t) is the corresponding computational errors. Therefore,

Xi(t) = u (t) + Ei(t) (2)

If the difference of two computational results is small, such as

|X1 − X2| = |E1 − E2| < ε, (3)

where ε is a pre-assigned small number, it has a possibility that E1 and E2 are both small,
and the computational results are convergent. On the other hand, (3) does not guarantee
that both E’s are small; it only states that the difference of two errors is small. Hence,
(3) can only be a necessary condition. This is the mistake made by Lorenz [5].



Convergent Numerical Solutions of Unsteady Problems 23

3 Numerical Examples

Two examples will be given below to demonstrate the convergence of numerical solutions
for differential equations.

A. The first one is a simple linear differential equation and we will construct stable
computations to demonstrate that (3) is only a necessary condition.

The equation,
du

dt
= −10u, (4)

is used with the initial condition u(0) = 1. The exact solution is

u (t) = exp (−10t) , (5)

The explicit finite-difference scheme is chosen for an unstable computation as

un+1 − un

∆t
= −10un

or

un+1 = (1 − 10∆t) un. (6)

It is clear that (6) is unstable, if ∆t > 0.1, the truncation errors is O (∆t). It is well
known that the numerical result will diverge for an unstable computation. We will show
two computational results in comparison with the exact solution: one is for ∆t = 0.05;
the other ∆t = 0.06. Two computational results agree completely initially. This is be-
cause that the computations of first step for two different time steps are identical. Since
the truncation errors are O (∆t), the results for the first few steps, when the computation
time is about the same O (∆t) , cannot be accurate. The comparison presented in the Fig.
1 demonstrates two computational results are not close to the exact solution even though
they are fairly close to each other. This confirms the claim that the small difference of two

computational results can only be a necessary condition for the convergence of unsteady

problems. On the other hand, both computational results asymptotically converge to the
exact solution, zero, for the steady problem. This is an example to show that von Neu-
mann’s consistent and stable conditions are necessary and sufficient for steady problems,
but not sufficient for unsteady problems. For a consistent and stable computation, it
still requires checking computed results by successively reducing time-step size until the
difference is acceptably small; then, the convergence can be claimed [4] for an unsteady
computation.

Another commonly known example, frequently taught in the first-year graduate course
in heat transfer, is the heat equation. It is well known that a consistent and stable com-
putation is sufficient to provide a convergent steady-state solution, but cannot guarantee
a convergent transient solution. A convergent transient solution can only be obtained by
successively reducing the integration time steps until the change of the computed transient
results is acceptably small.

B. The second example is the Lorenz second model [4, 5, and 7]. The model is
composed with three non-linear first-order differential equations.
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X ′ = −Y 2 − Z2 − 1

4
(X − 8)

Y ′ = XY − 4XZ − Y + 1
Z ′ = 4XY + XZ − Z

(7)

The initial condition used below is (X = 2, Y = 1, Z = 0). The error curve presented
in Fig. 2 is the difference of X(t) computed by the fifth-order Taylor-series method [7]
with 10-6 time step by the Taylor-series method for time-steps 10-7 , respective. The
conclusion is independent of the numerical methods used to integrate the equations (7).
The details of comparison of various methods can be found in [4].

The error curve shown in Fig. 2 differs obviously from any non-convergent error curves
for any linear differential equations. The recorded difference of two computational results
is too small when time is less than 30; so, we did not plot them. According to Lorenz’s
opinion [5], this shows that the numerical solutions are good for this short period of
time; even thought, he agreed that numerical solutions for long time is not possible. It
is worthy to point out that the time steps used in our computation is much smaller than
what Lorenz used; so, our good results, according to Lorenz’s criterion, can be extended
to larger time. We will explain why this concept is wrong below.

The only available detailed error analysis for numerical solutions of non-linear differ-
ential equations, as we are aware, is for the famous Lorenz 1963 model [8]. It clearly
demonstrated that two major amplification mechanisms exist for truncation errors, in-
troduced by all numerical methods. The first is the explosive amplification mechanism,
which can instantly amplify the truncation tremendously when the trajectory penetrates
the separatrix by violating the differential equations. Since the Lorenz 1990 model does
not have an attractor, the explosive amplification does not occur, confirmed by our nu-
merical computations [4]. We will not further discuss it here; the interested readers can
read [8].

The second mechanism is the exponential amplification of errors, which is also found
in the numerical solution of linear differential equations as explaining in the first example.
An unstable computation for unsteady linear differential equations can result two kinds
of behaviors uniformly in time: exponential growth of errors, or exponential growth of the
amplitude of oscillatory solutions. The crucial difference between non-linear differential
equations and linear ones is the exponential error amplification for non-linear differential
equations is not uniform in time, see Fig. 2. The growth of truncation errors occurs in
”irregular valleys”. This suggests the existence of certain dynamic structures in the phase
space. This agrees with the exponential amplification of errors described in [8]. When
two trajectories move along the direction of a stable manifold, the distance between them
shrinks; in other words, errors are reduced; when trajectories move along an unstable
manifold, errors are amplified. The combined consequence is, however, the exponential
growth of truncation errors in time as shown in Fig. 2.

It should be emphasized here that the error amplification is due to the unstable compu-
tation locally, which violates von Neumann’s convergence criterion. For linear differential
equations, it will lead to divergent solutions; one would not expect it could provide cor-
rect solutions for non-linear differential equations. If it were so, it would mean that it
were easier to numerical integrated non-linear differential equations, since no check of
convergence would be needed. Then, it was always legitimate to replace a derivative by
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Figure 1: Comparison of computational results with the exact solution. The number on
the right of the plotting points indicates the computational time of the point.

Figure 2: The difference of numerical results of time steps 10−6 and 10−7.

a finite-difference counterpart without worrying they may not even be approximations!
This is exactly what has happened in solving chaos or turbulence numerically now.

It is also worthy to mention that it has been demonstrated in [8] that a small difference
of two computations does not imply either one is close to the correct solution for unsteady
problems. This has been experienced many times in the history of numerically solving
both linear and non-linear differential equations of unsteady problems, but has been
overlooked in solving chaos or turbulence numerically.

This difficulty associated with unstable computation is the property of non-linear dif-
ferential equations, and cannot be remedied by adjusting numerical methods, see [8]. Since
the truncation errors are not controllable and occur randomly, the numerical computa-
tional chaos results, or turbulence is also random in nature; irrespectively, the associate
boundary conditions are either independent of time, or depend on time regularly. Con-
sequently, an unstable numerical result is the random amplification of truncation errors,
induced by numerical processes, and has no physical meaning.
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We do not believe that our paper can reverse the avalanche of treating numerical
errors as numbers with physical significance, but hope someone, in the near future, may
take a little effort to honestly compare computational results with carefully carry-out
measurements. It is time to reconsider the activities of continuously producing numerical
errors in large amount without any justification. Fundamental principles in science should
always be respected before one can prove otherwise.

4 Comments, discussions, and open problems from

some experts in the field

I will first outline some well-known basic principles in numerical mathematics, which will
help to explain the following questions. In calculus, we know

∂u

∂t
= lim

∆t→0

u (t + ∆t) − u (t)

∆t
(8)

Since computers are digital computational devices, it is necessary to discretize a derivative
in order to calculate it in computers. I will use a finite-difference scheme as an example
below; the principle can be equally applied to all discretized numerical methods without
exception. A derivative can usually be replace by a finite-difference form,

∂u

∂t
= (

u (t + ∆t) − u (t)

∆t
) + TE (truncature errors) , (9)

where TE represents truncation errors and is of O (∆t) in the above example. In the
limit of ∆t approaches zero, (9) agrees with (8). The TE always exists in any discretized
process. Algebraic equations are resulted after all derivative terms being replaced by
their difference forms; for example, terms in the bracket in (9). If the resulting algebraic
equations are stable, TE will be exponentially decayed and the term inside the bracket is
a good approximate of the derivative, since (8) will be asymptotically satisfied. On the
other hand, if the resulting equations are unstable, the TE will be exponentially growing,
and (8) is violated, or it implies that

u (t + ∆t) − u (t)

∆t
does not converges to

∂u

∂t
. (10)

The resulting equations after discretization have nothing to do with the original differential
equations, and certainly are not an approximation of the original differential equations.
Thus, the solutions of such algebraic equations are unrelated to the original differential
equations. For linear differential equations, an unstable computation usually results ex-
ponentially divergent results, or exponentially divergent oscillatory results, a clear sign of
a failure computation. This is why von Neumann put forward that the ”stability” is the
necessary and sufficient condition for a convergent solution for steady-state problems.

For unsteady problems, it is necessary to use even smaller ∆t than required the one
by Courant-Fredrich-Levy (CFL) condition in order to get an accurate transient solution
as demonstrated in the first example of the current paper. There are many examples can
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be found in heat conduction problems in undergraduate heat transfer textbooks. Conse-
quently, stability is only a necessary condition to obtain an accurate transient solution.

I will answer and discuss the following questions.

1. The author comments the stability of the numerical computations for nonlinear ordi-
nary differential equations. More precisely, the author comments that the agreement
of two computational/numerical results is only necessary not sufficient condition
for the accuracy of the computational/numerical results. Really, the accuracy of
the computational/numerical results is very important scientific problem. Unfortu-
nately, the author doesn’t propose a way for the solution of this problem.

Answer: The answer to this question is very simple for linear or non-linear differen-
tial equations, if the resulting algebraic equations are stable; continuously reducing the
integration time step, ∆t until the change of the transient solutions for two different time
steps becomes acceptably small. Then, both results can be considered as an accurate
transient solution. If one carries out the computation of the first example in the paper by
further reducing the integration time step, an accurate transient solution can be readily
found, and agree with the exact solution to any degree as one wish. There are many other
examples of heat conduction problems can be found in undergraduate heat transfer texts.

For non-linear chaos differential equations, when the governing parameter is larger

than its critical value, the situation becomes much more complex. Two Lorenz’s models
have been discussed in [4, 8] and his second model is also used as the second example of
this paper. The Lorenz’s first model was analyzed in detail and reported in [8]. It shows
that the truncation (numerical) errors are amplified exponentially in the unstable region
(manifold); are reduced exponentially in the stable region (manifold). According to the
basic principle outlined above, it is clear that the numerical results in the unstable regions
cannot be considered as an approximate solution to the original differential equations.
Similar conclusion can be made for the Lorenz’s second model and reported in [4].

In addition, we have identified that the Lorenz’s first model contains local separatrix,
not in his second model. The truncation errors can be amplified explosively when the tra-
jectory penetrates the virtual separatrix, which violates the differential equations. The
existence of a virtual separatrix is a consequence of singular points of a non-hyperbolic
system of differential equations, which is not shadowable [8, 9]. A commonly cited com-
putational example in chaos involving two solutions of slightly different initial conditions
that remain ”close” for some time interval and then diverge abruptly when one pene-
trates the virtual separatrix, violating the differential equations and the other does not.
Before it was pointed out in [8, 9], that this phenomenon is actually due to the explosive
amplification of numerical errors, and violation of the differential equations as described
above, this behavior was often believed to be a typical characteristic of chaos, and fre-
quently used as the evidence that a computation is chaos. Similar computational results
can occur for two different integration time steps; many would consider such results as
acceptable since it is a “twin brother” of sensitivity to initial conditions and a typical
characteristic of chaos. This mistake deserves clarification and explained thoroughly in
[8].

Additional examples for other non-linear chaos differential equations are cited in [3].
The central issue discussed in [9] is that no chaos solution exists for differential equations,
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since all computations are unstable. This is the obvious consequence that all discretized
numerical methods have truncation errors and are incapable to solve chaos differential
equations.

Since non-linear differential equations can have multiple solutions when the value of
its parameter is larger than its critical value, once the trajectory went in the unstable
region, the amplified truncation errors alters its initial condition equivalently for the next
stable region. This can lead to next stable solution from the one that one was originally
trying to get as discussed in [10]. This is a brand new topic, which has never been studied,
yet.

2 I tried to re-evaluate the revised version of the manuscript in goodwill. However
in his revised manuscript the author insists in keeping his claim that ”Lorenz [5]
mistakenly concluded that his solution for his 1990 model was convergent initially
for thirty years!” (in Introduction). For me this was the one and only major issue
I had, as reading Lorenz’s answer to Yao and Hughes published in Tellus (2008),
60A, 806–807, I think that this claim is both strong and wrong.

Answer: The answer of this question is simple and clear by judging it from the basic
principle outlined above. Lorenz’s numerical results of his second model clearly show
the trajectory went through stable and unstable regions alternatively, see Fig. 2 of the
paper and [4]. The difference of the results for two different time steps increases when
the trajectory moves in the unstable region, where (8) is violated; the difference decreases
when the trajectory moves in the stable region. Can one claim such a computational
result is good when most parts of it violate (8), a definition in calculus?

Many authors followed Lorenz’s step [14] and claimed mistakenly that their solution
is good for a short initial period. Form the above discussion; it is clear that the initial
good period will be zero, if the initial point is selected in the unstable region. If the initial
condition is located in the stable region, the computed result will be good until it moves
out of the stable region and gets into the unstable region.

Since without numerical instability, there is no chaos; so they can only claim their
results is a good regular solution, not chaos for the initial period. I want to emphasize
again that all numerical chaos are amplified numerical errors.

3 The topic of this paper is rather interesting. But the extension and scope of the
paper seems to be very brief for what such a topic may require. The references seem
to be devoted to self-citations, when there is a huge amount of scientific literature
in the field.

Answer: Detailed analysis are available in [3, 4, 8, 9] and additional references are
listed below, which are all my own work. I do not know the existence of any written paper
in line with my conclusion. If there are some, I welcome readers to reveal them to me. The
entire huge amount of scientific literature devotes to treat amplified numerical errors as
computed chaos with very few exceptions cited in the additional references listed below.
This is exact the reason that I tried to push this paper forward. Fortunately, science is not
a democratic system that majority wins; in fact, truth always prevails in science. I hope
the basic principles, outline above, can help readers to analyze the situation rationally by
themselves, not just follow the argument of established authorities.
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4 The major part of the discussion seems to be devoted to demonstrate ”that the
small difference of two computational results can only be a necessary condition for
the convergence of unsteady problems”. All the discussion seems to emerge from Eq.
3, which from another side (may be a too simplistic one), seems to be self-evident:
”getting two bad results rather similar does not guarantee that the conclusion is
alright”. The focus of the discussion could be set in dealing with the definition of
good or bad.

Answer: I do not really understand this question, but I believe the above discussion
has already answered this question.

5 It may be of interest to cite some of the large amount of references in the litera-
ture devoted to the topic of solving a problem by computing many similar initial
conditions/parameters, and analyzing later the results. This aims to assign given
probabilities of success to every computed solution (as for instance in the field of
meteorology).

Answer: Please read the answer of the second question, and note that the large
amount literatures ignored the basic principles discussed above.

I would like to point out that a slightly different initial condition can result a com-
pletely different long-time solution for non-linear differential equations when the governing
parameter is above its critical value; so there are multiple solutions exists even for non-
turbulent flows. I list some references [11-14] below for interesting readers to explore.
More references can be found in them. They are also all my works, since my works are
the only theoretical studies exist, beside few experiments in fluid mechanics.

It is worthy to mention, from our experience, that the computation of the Navier-
Stokes equations fails to converge if the Reynolds number is too much larger than the
critical Reynolds number. This is the reason why a direct numerical simulation cannot
be use to study flow transition; so, it is also unhelpful for turbulence.

A well-known excise to stabilize an unstable computation is to use upwind difference
scheme; however, the added numerical viscosity associated with the upwind difference
scheme may overwhelm the actual viscosity to invalidate the computational results. One
can see why weather forecast is so unreliable, it is not because that the Navier-Stokes
equations are incorrect; it is due to lack of a method to solve them correctly.

6 Along the paper, the concepts of chaoticity and stability seem to be mixed somehow,
and a clear separation of both definitions should be appreciated.

Answer: The rigorous mathematical definition of chaos can be found in [2, 8].
Traditionally, the linear stability analysis in fluid dynamics is to study the growth

or the decay of a very small perturbation quantity added to the steady-state base flows.
For a laminar flow, the differential equations are stable, but the difference scheme can be
unstable. This leads to CFL condition.

The extension of such analysis for time-dependent base flows is complex and unsuccess-
ful. The linear-stability analysis of the algebraic equations resulted from the discretization
of differential equations is very similar to the stability analysis in fluid dynamics. An easy
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alternative is to solve differential equations with two different time steps, and hope the
difference is acceptably small as discussed in this paper.

For chaos differential equations, it becomes very complex, since the differential equa-
tions are themselves unstable. There is no way to design a stable numerical method for
unstable differential equations. As noted in the Question 5, there is a well-known way to
stabilize an unstable computation by using use upwind difference scheme; however, the
added numerical viscosity associated with the upwind difference scheme may overwhelm
the actual viscosity to invalidate the computational results.

I have repeatedly tried to explain that numerical chaos is simply amplified numerical
errors. Numerical chaos and numerical instabilities are different titles, but the same
object.

7 The last paragraph on page 6 deals with the numerical computational chaos results.
I agree with the fact that any numerical scheme will diverge from a true orbit
beyond certain timescales for given problems. But some discussion about how these
timescales may vary depending on the nature of the orbit, and even may be very
long even when the orbit is chaotic is of interest. A discussion about the shadowing
and predictability topics should be also appreciated.

Answer: This answer of this question is a part of the Question 2 and copy below for
the convenience of readers.

Many authors followed Lorenz’s step [5] and claimed mistakenly that their solution
is good for a short initial period. Form the above discussion; it is clear that the initial
good period will be zero, if the initial point is located in the unstable region. If the initial
condition is selected in the stable region, the computed result would be good until it moves
out of the stable region and gets into the unstable region.

The concept of shadowing is briefly reviewed in [9]. It was originally invented to save
chaos theories for the hyperbolic systems. Since the relation between chaos theory and
differential equations has not been established (Smale’s 14th problem) and topological
transitivity cannot be proved and is likely invalid, shadowing is not a useful concept for
differential equations.

8 There is a vast amount of literature devoted to the numerical methods and how
they deal with chaos. A brief panorama of the field should be of interest. After
this, it may happen the statement ”but hope someone, in the near future, may take
a little effort to honestly compare computational results with carefully carry-out
measurements” should be revised by the author.

Answer: It is a fact there is a large amount of literature devoted to the numerical
methods and chaos, since both are the main streams of research in their areas and have
been heavily funded by government agents; in particular, in the US. How could so many
smart researchers all made the same mistake of violating the basic principles of numerical
methods in solving differential equations, put forward by von Neumann?

Maybe, this is due to the limitation of human brains to discover brand new idea;
instead, we look established authorities for guidance. However, please read my answer of
the question 3 above.
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