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Abstract

In this paper, we construct a three-country model with two governments and two
firms and consider dynamic behavior of the sequential subsidy game in which the
governments determine their optimal trade policies and then the firms determine
their optimal outputs. We first show the existence of an optimal trade policy under
realistic conditions. In the case of symmetric firms, the governments adopt periodic
mixed trade policy (i.e., one government gives subsidy and the other levies tax in
one period and then the governments interchange their policies in the next period)
if the adjustment is naive, and the governments adopt a stable mixed policy if
adaptive. In the case of asymmetric firms, a firm receives subsidy if its cost is lower
and pays tax if higher. If the Cournot output point under the optimal subsidy is
locally stable, then its dynamics can be periodic which is synchronized with the
periodic trade policy. If it is locally unstable, then complex dynamics involving
chaos emerges regardless of the cost difference.

Keywords: three country model, two stage game, ”elastic, trade policy, unit-elatsic
demand, Neimark-Sacker bifurcation.
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1 Introduction

Markets become imperfectly competitive due to many factors such as the small number
of firms, the differentiated goods, the scale of economics, etc. In such an imperfectly
competitive international market, the governments may be motivated to introduce trade
policies like tariff, export subsidy and tax to increase national welfare of their countries. It
has been demonstrated that an increase in a domestic export subsidy raises the domestic
firm’s output and its profit when the firms compete in a Cournot way [3]. It has been also
demonstrated that an export tax can be optimal when the firms compete in a Bertrand way
[4]. It is now well-known that the source of this sharp contrast comes from the difference in
the assumption on the firms’ strategic behavior (that is, the goods are strategic substitutes
or strategic complements). It is also well-known that this behavioral difference relates
to the curvature and the elasticity of the demand function. Recently, constructing a
simplified version of the three-country model with two firms and two governments, [1]
shows, among others, the following clear-cut results when the demand is unit-elastic:

(1) When the foreign government is passive, the optimal trade policy of the active
domestic government is free trade if the production costs of the two firms are identical,
an export subsidy if the home firm has lower cost and an export tax otherwise.

(2) When both governments are active, a continuum of policy equilibria exist if the
production costs are identical and no policy equilibrium exists if they are different.

As a consequence of the second result, no dynamic consideration has been provided
yet. In particular, it is not known yet how the optimal policy as well as the optimal
outputs change over time and what kinds of changes might occur. The main purpose of
this paper is twofold; to consider dynamics of the optimal trade policy and the associated
optimal outputs under unit-elastic demand and to show that rich dynamics can be born
when natural constraints are imposed on the government’s policy selections. This paper
complements [1] from a dynamic point of view. It is a continuation of [6] who focus mainly
on the comparative statistic analysis of the similar model (i.e., the effects on the optimal
outputs caused by a change in the trade policy of the domestic government). The dynamic
model of outputs to be considered in this paper resembles nonlinear dynamic duopoly
models, which have been extensively studied for the last twenty years. Comprehensive
summary of the earlier work has been presented in [7]. More recent developments on this
field are given in [2]. This paper also aims to apply the theoretical results obtained so
far to the dynamic analysis in the framework of international economics. The paper is
organized as follows. Section 2 presents a variant of the three-country model in which
both governments are active. Section 3 considers policy dynamics and Section 4 analyzes
output dynamics with the optimal trade policy. Section 5 gives concluding remarks.

2 Model

The model presented below is a variant of the three-country model. There are two coun-
tries with one firm in each of them, and these firms export their product to a third country.
The outputs of the firms are denoted by x and y, and constant marginal costs of the two
firms are denoted by c1 and c2, respectively. Competition in the third country is modeled
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through a two-stage game. At the first stage, the governments hosting their firms choose
subsidy rates, si for i = 1, 2, in order to maximize their welfare, taking the optimal behav-
ior of the firms as given. At the second stage, the firms employ the quantity competition
in a Cournot way and choose profit maximizing outputs, taking their governments’ trade
policies as given. Optimal subsides and optimal outputs are backwardly determined. In
particular, we solve the profit maximization problems of the firms, given the levels of the
subsidy in Section 2.1, then examine and solve the welfare maximization problems of the
governments, given the optimal behavior of the firms in Section 2.2. In order to get a
complete description of the dynamics of the subsidy game in the latter part of the paper,
we will specify the best reply functions of the firms and those of the governments in this
section.

2.1 Profit Maximization

Let the inverse demand function be unit-elastic,

P =
1

Q
,

where Q is the total output, Q = x + y.1 At the second stage in which the governments’
subsidies are given, firm x and firm y choose outputs to maximize their profits defined by

π1 = (P − (c1 − s1))x,

and
π2 = (P − (c2 − s2))y.

The first-order conditions of the profit maximization are given by

∂π1

∂x
=

y

(x + y)2
− (c1 − s1) = 0,

and
∂π2

∂y
=

x

(x + y)2
− (c2 − s2) = 0,

where the second-order conditions are satisfied for any x and y that solve the first-order
conditions. We call the production cost including the subsidy an actual cost. Although
we will formally show later that the actual costs are non-negative, we suppose for the
time being that subsidies are given as cx > 0 and cy > 0. From the first-order conditions,
the explicit forms of the firms’ best reply functions are derived as

r̄1(y) =

√
y

c1 − s1

− y (1)

and

r̄2(x) =

√
x

c2 − s2

− x. (2)

1See [5] that studies the same model with different demand, P = Q−λ and λ �= 1.
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Any intersection of the best reply functions determines a Cournot equilibrium at which
we can solve for the output quantities:

xC(s1, s2) =
c2 − s2

((c1 − s1) + (c2 − s2))2
(3)

and

yC(s1, s2) =
c1 − s2

((c1 − s1) + (c2 − s2))2
, (4)

where superscript C is attached to variables associated with the Cournot point.2 The
Cournot outputs in (3) and (4) are substituted into the profit functions to obtain the
Cournot profits:

πC
1
(s1, s2) =

(
c2 − s2

(c1 − s1) + (c2 − s2)

)2

(5)

and

πC
2
(s1, s2) =

(
c1 − s2

(c1 − s2) + (c2 − s1)

)2

. (6)

Dividing (3) by (4) and (5) by (6) yields, after arranging terms, the ratios of outputs and
profits,

xC

yC
=

c2 − s2

c1 − s1

� 1 according to c2 − s2 � c1 − s1,

and
πC

x

πC
y

=

(
xC

yC

)2

� 1 according to xC � yC.

These inequalities imply the following results on the optimal behavior of the firms: The
firm with the lower actual cost produces more output and earns more profit than the firm
with the higher actual cost.

2.2 Welfare Maximization

At the first stage of the sequential game, the governments determine the optimal levels
of the subsidy so as to maximize the national welfare defined by

W1(s1, s2) = πC
1
(s1, s2) − s1x

C(s1, s2), (7)

and

W2(s2, s1) = πC
2
(s2, s1) − s2y

C(s2, s1). (8)

We derive the specific forms of the best reply functions of the governments and con-
sider their characteristics in the policy space. Substituting xC , yC, QC = xC + yC and

2Since r̄1(y) and r̄2(x) take mound-shaped curves starting at the origin, the curves intersects twice at
(0, 0) and (xC , yC). The former is the trivial equilibrium point and the latter is the non-trivial equilibrium
point. Our concern is on the non-trivial point and thus no further considerations are given to the trivial
equilibrium point.
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P C = (QC)−1 into (7) and (8) yields the explicit forms of the welfare functions of the
governments,

W1(s1, s2) =
(c2 − s2 − s1) (c2 − s2)

((c1 − s1) + (c2 − s2))2
, (9)

and

W2(s2, s1) =
(c1 − s1 − s2) (c1 − s1)

((c1 − s1) + (c2 − s2))2
. (10)

The government of country 1 maximizes W1(s1, s2) with respect to s1 and the govern-
ment of country 2 maximizes W2(s2, s1) with respect to s2. We can solve the first-order
conditions to obtain the best reply functions:

r1(s2) = −s2 + (c2 − c1) and r2(s1) = −s1 + (c1 − c2), (11)

where the second-order conditions are satisfied. These functions are essentially the same
as those derived by [1]. It is apparent that there is a continuum of optimal subsidies
s1 + s2 = 0 for symmetric firms (c1 = c2) and no equilibrium exists for asymmetric firms
(c1 �= c2).

To avoid the indeterminacy of the optimal policy equilibrium in the case of asymmetric
firms, we impose the following external upper and lower bound constraints on the levels
of the optimal policy, si, taking account of the fact that the governments behave with
control. The first constraint reflects the fact that the governments have the upper bound
of the subsidy, due to their budget constraints. The second constraint takes account of the
fact that the government does not levy such a strong export tax that might result in its
firm to exit the market. Intuitively speaking, in choosing their policies, the governments
neither take care of all the production costs nor take all of the profits.

Assumption 1. sL
i ≤ si ≤ sU

i for i = 1, 2 where sU
i is the upper bound of the subsidy

level defined by sU
i = ci and sL

i < 0 is the lower bound of the subsidy level, which
shows the upper bound of the export tax.

Under Assumption 1, the best reply function of the government of country 1 becomes
piecewise linear with three segments:⎧⎨

⎩
sU
1

s2 < su
2
,

r1(s2) su
2
≤ s2 ≤ s�

2
,

sL
1

s2 > s�
2
,

where su
2

and s�
2

are defined by r1(s
u
2
) = sU

1
and r1(s

�
2
) = sL

1
, respectively. In the same way,

the best reply function of the government of country 2 is derived to be piecewise-linear
with three segments: ⎧⎨

⎩
sU
2

s1 < su
1
,

r2(s1) su
1
≤ s1 ≤ s�

1
,

sL
2

s1 > s�
1
,

where su
1

and s�
1

> 0 are defined by r2(s
u
1
) = sU

2
and r2(s

�
1
) = sL

2
, respectively.

An intersection of these modified best reply functions is a Nash equilibrium of the
trade policy, (se

1
, se

2
). First of all, we should discuss the determination of the optimal
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si
l si

U

s j
l

s j
U

si
e

E

si
Lsi

u
si

s j
L

s j
u

s j

Figure 1: Determination of the optimal policy under ci < cj.

trade policy in the case where ci < cj and sL
j ≤ su

j . By definition of the piecewise linear
best replies, it is clear that the optimal subsidy policy of firm i is se

i = sU
i . From (3),

(4) and Assumption 1 (i.e., sU
i = ci), the optimal output of firm 2 is zero if c1 < c2 and

sL
2
≤ su

2
whereas the optimal output of firm 1 is zero if c2 < c1 and sL

1
≤ su

1
. In both cases

one of the firms will export nothing to the third country and the competition in the third
country will be terminated. To confine our attention to the third-country model with
active competition, we assume that su

j and sL
j are given such that the following inequality

holds.

Assumption 2. sL
j > su

j for j = 1, 2.

Notice that su
j = cj − 2ci and s�

j = cj − ci − sL
i , so clearly su

j < s�
j for both firms.

Assumption 2 requires that for j = 1, 2, sL
j > su

j . In order to guarantee the existence of
negative sL

j bounds, we make the additional assumption:

Assumption 3. cj < 2ci for j = 1, 2 and i �= j.

Without losing generality, we can assume that in the case of asymmetric firms, ci < cj .
First we show that s�

i < sU
i . Since sL

j > cj − 2ci > cj − 2cj = −cj , we have

s�
i = ci − cj − sL

j < ci − cj − (−cj) = ci = sU
i .

However no such comparison can be made between sL
i and s�

i . In order to guarantee that
sL

i < s�
i, we make the following assumption:

Assumption 4. sL
i + sL

j < ci − cj.

Notice that this assumption holds if the marginal costs ci and cj are close to each other.
The best reply functions are shown in Fig. 1 and from it we can conclude that the unique
equilibrium is

se
i = cj − ci − sL

j and se
j = sL

j (12)

Hence we have the following:
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Theorem 1 Under Assumptions 1,2,3 and 4, if the firms are symmetric (i.e., c1 = c2),
then there are infinitely many equilibria on the line si = −sj whereas if the firms are
asymmetric with ci < cj, then se

i = −sL
j + (cj − ci) > 0 and se

j = sL
j < 0.

3 Dynamics Analysis of Trade Policy

Theorem 1 guarantees the existence of a unique optimal trade policy. In this section, we
consider the dynamic behavior of the trade policy in the policy space (s1, s2). To this
end, we assume the following discrete time dynamic process of the policy selection:⎧⎨

⎩
s′
1

= (1 − α1)s1 + α1R1(s2),

s′
2

= (1 − α2)s2 + α2R2(s1),
(13)

where ′ denotes the unit-time advancement operator, αi is the adjustment coefficient
with 0 < αi ≤ 1 and R1(s2) and R2(s1) are the best reply functions restricted to their
intervals, [sL

2
, sU

2
] and [sL

1
, sU

1
],

R1(s2) =

⎧⎨
⎩

sL
1

for s�
2
≤ s2 ≤ sU

2
,

r1(s2) for sL
2
≤ s2 < s�

2
,

and

R2(s1) =

⎧⎨
⎩

sL
2

for s�
1
≤ s1 ≤ sU

1
,

r2(s1) for sL
1
≤ s1 < s�

1
,

3.1 Symmetric firms: c1 = c2

In the case of identical costs, we first perform some numerical simulations to examine the
dynamic behavior of the governments. We then confirm analytically that the numerical
results are robust, and finally summarize these results in Theorems 2 and 3. The numerical
simulations are presented in Fig. 2 where the policy is best reply with naive expectation
(i.e., αi = 1). The other case is given in Fig. 3 where the policy is adaptively adjusted
(i.e., 0 < αi < 1).

The feasible policy space is defined by the rectangle S = [sL
2
, sU

2
] × [sL

1
, sU

1
], which is

divided into distinctive four parts by the horizontal and vertical lines, s1 = s�
1

and s2 = s�
2
,

SI = {(s1, s2) ∈ S | s�
1
≤ s1 and s�

2
≤ s2},

SII = {(s1, s2) ∈ S | s1 < s�
1

and s�
2
≤ s2},

SIII = {(s1, s2) ∈ S | s�
1
≤ s1 and s2 < s�

2
},

SIV = {(s1, s2) ∈ S | s1 < s�
1

and s2 < s�
2
}.

In Figs. 2(A) and 3(A), we select three initial points denoted as I1, I2 and I3 in SI , SII

and SIII , respectively and depict the three trajectories starting from these points. In
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Figs. 2(B) and 3(B), which are enlargements of the region SIV , we also select three initial
points denoted as i1, i2 and i3 inside SIV and show three trajectories starting from these
points. Simulations in Fig. 2(A) indicate that the trajectories converge to period-2 cycles
when the trade policies are naively adjusted. The two periodic points are symmetric with
respect to the line s1 + s2 = 0. On the other hand, the simulations shown in Fig. 3(A)
indicate that the trajectories converge to stationary points on the line s1+s2 = 0 when the
trade policies are adaptively adjusted. The first result on policy dynamics is summarized
as follows:

Theorem 2 If the firms are symmetric, then the naively adjusted process of the export
trade policy (i.e., (13) with α1 = α2 = 1) gives rise to infinitely many stable period-2
cycles, and a trajectory starting from a point other than a stationary point converges to
one of these cycles.

Proof. We prove this statement with four steps. (I): It can be seen that R1(s2) = sL
1

and R2(s1) = sL
2

for all (s1, s2) ∈ SI . By the identical cost assumption, R1(s
L
2
) = s�

1

and R2(s
L
1
) = s�

2
whereas R1(s

�
2
) = sL

1
and R2(s

�
1
) = sL

2
by the definitions of s�

2
and s�

1
.

Thus any trajectory starting at a point inside S1 converges to the period-2 cycle with
periodic points, (sL

1
, sL

2
) and (s�

1
, s�

2
). The trajectory with the initial point I1 in Fig. 3(A)

is an example of this case. (II): Next take an initial point (sII
1

, sII
2

) ∈ SII . Then the
naive adjustment process conveys the point to R1(s

II
2

) = sL
1

and R2(s
II
1

) = −sII
2

and
then R1(−sII

2
) = sII

1
and R2(s

L
1
) = s�

2
, that are bounced back to the point (sL

1
,−sII

2
).

Thus any trajectory starting at a point (sII
1

, sII
2

) ∈ SII converges to the period-2 cycle
with periodic points (sL

1
,−sII

2
) and (sII

1
, s�

2
). The trajectory with the initial point I2 is an

example of this case. (III): In the same way, we can show that a trajectory starting at a
point (sIII

1
, sIII

2
) ∈ SIII converges to the period-2 cycle with periodic points, (−sIII

2
, sL

2
)

and (s�
1
, sIII

2
). The trajectory with the initial point I3 is an example of this case. (IV):

We finally consider periodic behavior in Fig. 3(B) where the initial points are selected
inside SIV . Since the adjustment process in SIV is given by

s′
1

= −s2 and s′
2

= s1,

the governments expect the symmetric point (−sIV
1

,−sIV
2

) with respect to the s1 +s2 = 0
locus for any initial point (sIV

1
, sIV

2
). Taking (−sIV

1
,−sIV

2
) as given, the government expect

(sIV
1

, sIV
2

) in the next time period. Thus any point (sIV
1

, sIV
2

) ∈ SIV and its symmetric
point (−sIV

1
,−sIV

2
) ∈ SIV are period-2 points. Three period-2 cycles depicted in Fig.

2(B) are examples of this case.
We say that the governments take the pure policy if s1s2 > 0, the mixed policy if

s1s2 < 0, and the one-side free trade policy if s1s2 = 0 and si �= 0 for i = 1, 2. Furthermore,
we say that the governments take a pure subsidy policy if s1 > 0 and s2 > 0 and a pure
tax policy if s1 < 0 and s2 < 0. In the mixed policy, one government pays subsidy and
the other government charges tax. Figs. 2(A) and 2(B) are divided into four rectangles
by the horizontal and vertical axes. The rectangles on the top-right and the bottom-left
represent the set of points which generate pure policy (i.e., the pure subsidy policy and
the pure tax policy). On the other hand the rectangles on the top-left and on the bottom-
right represent the set of points which generate mixed policy. If a point is on the either



Dynamics in International Subsidy Games 9

Figure 2: Coexistence of period-2 cycle under naive expectation.

axis, it represents the one-side free trade in which one government gives no subsidy and
charges no tax and the other government either gives subsidy or charges tax.

Let us denote the period-2 points of the trade policy by SA = (sA
1
, sA

2
) and SB =

(sB
1
, sB

2
). The period-2 cycle means that if the governments expect SA, then SB is realized;

and if the governments expect SB in the next period, then SA is realized. Let us take
the case of the pure trade policy. If both governments expect that their competitors take
the same policy, for example export subsidies sA

1
> 0 and sA

2
> 0, then in the next period

the process becomes the opposite pure policy, that is, export taxes sB
1

< 0 and sB
2

< 0.
So the governments alternate between the pure subsidy policy and the pure tax policy.
In contrast to this, if both governments expect that their competitors take the mixed
policy, for example, government 1 adopts the subsidy policy sA

1
> 0 while government

2 takes the tax policy sA
2

< 0, then, in the next time period the process becomes the
subsidy with sB

1
= −sA

2
for government 1 and the tax with sB

2
= −sA

1
for government 2.

The governments therefore alternate between the mixed policies in which the values and
the signs of the subsidy and the tax are interchanged. We summarize these results as a
corollary of Theorem 2:

Corollary 1 The trade policy has an initial point dependency: (1) If both governments
expect that their competitors adopt the subsidy policy, then the tax policy is realized, and
vice versa. (2) If a mixed policy is expected, then the opposite mixed policy is realized
where the realized point of the subsidy or the tax is the mirror image of the expected point
with respect to the -45◦ degree line.

The optimal outputs associated to these periodic points are obtained by substituting the
periodic points into (3) and (4): for k = A, B,

xCk =
c2 − sk

2

((c1 − sk
1
) + (c2 − sk

2
))2

and yCk =
c1 − sk

1

((c1 − sk
1
) + (c2 − sk

2
))2

. (14)

We now assume that the policy is adaptively adjusted (i.e., αi < 1) and the adjustment
coefficients are the same (i.e., α1 = α2 = α) for the sake of analytical simplicity. As can
be seen in Fig. 3(A), any trajectory with an initial point inside SI ∪ SII ∪ SIII sooner
or latter enters SIV . It is therefore sufficient for our purpose to consider the dynamics
observed within SIV . Our second result on policy dynamics is summarized as follows:
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Theorem 3 If the firms are symmetric, then the symmetric adaptive adjustment process
of the export trade policy (i.e., (13) with α1 = α2 < 1) is stable and converges to a point
on the line s1 + s2 = 0.

Proof. Let us start with an initial point (s0

1
, s0

2
) ∈ SIV . The optimal policy at the next

period is determined by the adaptively adjusted process,

s
′

1
= (1 − α)s0

1
+ α(−s0

2
),

s
′

2
= (1 − α)s0

2
+ α(−s0

1
).

The line passing through these two points, (s0

1
, s0

2
) and (s′

1
, s′

2
), is written as s2 = as1 + b

where the slope a and the vertical intercept b are

a =
s′
2
− s0

2

s′
1
− s0

1

= 1 and b = s0

2
− s0

1
.

It is clear that the adaptive process maps the optimal policy (s′
1
, s′

2
) to a point on the

s2 = as1 + b locus. That is, the trajectories of the optimal policies are controlled by

s
′

1
= (1 − α)s1 + α(−s1 − b),

s
′

2
= (1 − α)s2 + α(−s2 + b).

The adjusted processes are independent and governed by 1D difference equations with
slopes less than unity in absolute value,∣∣∣∣ds

′

i

dsi

∣∣∣∣ = |1 − 2α| < 1.

Hence the adjustment process is stable and a trajectory converges oscillating to the sta-
tionary state associated with the initial point (s0

1
, s0

2
),

se
1

= −s0

2
− s0

1

2
and se

2
=

s0

2
− s0

1

2

which is the intersection of the s2 = −s1 and the s2 = as1 + b curves. It is clear that
se
1

� 0 and se
2

� 0 if s0

1
� 0 and s0

2
� 0.

The stationary point (se
1
, se

2
) is on the line s1 + s2 = 0. Fig. 3(B) shows that the

trajectory starting from point i1 converges to the origin, se
1

= se
2

= 0, the trajectory
starting from point i2 converges to point α with sα

1
< 0, sα

2
> 0 and sα

1
= −sα

2
, and the

trajectory starting from i3 converges to point β with sβ
1

> 0, sβ
2

< 0 and sβ
1

= −sβ
2
. This

observation leads us to Corollary 2.

Corollary 2 The optimal trade policy has an initial point dependency: if both govern-
ments start with the same initial expectations, then the free trade is materialized (i.e.,
se
1

= se
2

= 0); If they start with different initial expectations (i.e., s0

1
�= s0

2
), then the

symmetric mixed trade policy is materialized:

se
1

= −s0

2
− s0

1

2
and se

2
= −se

1
.
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Figure 3: Coexistence of stable stationary points under adaptive expectation.

The corresponding stationary output values are obtained by substituting se
1

and se
2

into (3) and (4),

xC ==
c2 − se

2

((c1 − se
1
) + (c2 − se

2
))2

and yC =
c1 − se

1

((c1 − se
1
) + (c2 − se

2
))2

. (15)

3.2 Asymmetric firms: c1 �= c2

It is clear from Fig. 1 that the optimal policy is stable in the policy space if the firms are
asymmetric, regardless of whether the policy is naively or adaptively adjusted. It is also
clear that the optimal trade policy is mixed, which is summarized as follows:

Theorem 4 If the firms are asymmetric, then the firm with lower production cost receives
an export subsidy and the firm with higher production cost pays an export tax.

The optimal output values are determined by substituting the optimal subsidies (12) into
relations (3) and (4).

4 Dynamic Analysis of Output

In considering the output dynamics in the international subsidy game, we let the output
variables in (1) and (2) construct the adaptively adjusted output process:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x′ = (1 − β1)x + β1

(√
y

c1 − s1

− y

)
,

y′ = (1 − β2)y + β2

(√
x

c2 − s2

− x

)
,

(16)

where βi is the adjustment coefficient satisfying 0 < βi ≤ 1, and s1 and s2 are governed
by (13). As mentioned in the Introduction, the dynamic structure of system (16) resem-
bles that of the nonlinear Cournot models extensively studied in [2-7] in which different
subjects such as the emergence of complex dynamics involving chaos, multistability, the
structure of the basin of attraction, delay dynamics, etc., are discussed. We skip the de-
tailed examinations of system (16) and will apply these results to our dynamic analysis.
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4.1 Symmetric firms: c1 = c2

As a benchmark, we take β1 = β2 = 1 and consider the output dynamics under naive
expectation. Let us denote the actual cost ratio by

k =
c1 − s1

c2 − s2

.

It is already shown in [7] that loss of stability occurs when the actual cost ratio satisfies
the following equation,3

(k − 1)2

4k
= 1 (17)

where the smaller solution is 3−2
√

2(� 0.172) and the larger solution is 3+2
√

2(� 5.828)̇.
It follows that if the actual cost ratio stays within the interval bounded by the smaller
and larger solutions, then the Cournot point is stable. In the same way if the actual cost
ratio falls outside the interval, it becomes locally unstable. We assume the stability of
the Cournot point and examine the effects caused by the policy on output dynamics for
a while. It is also shown in [7] that the dynamics is symmetric with respect to k = 1. In
order to get new results, we confine our consideration to the case of c1 < c2 and assume
that c1 = 1 throughout the analysis for the sake of analytical convenience. It can be
checked that the nonnegativity of the output trajectories is guaranteed when the actual
cost ratio is at least 4/25(= 0.16).

If there is no policy lag in the sense that the firms receive the subsidies from the gov-
ernments without any time delays, and the policy is naively adjusted, then the dynamics
of the outputs and the subsidies are controlled by the dynamic equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′ =

√
y

c1 − s1

− y,

y′ =

√
x

c2 − s2

− x,

s′
1

= −s2,

s′
2

= −s1,

(18)

where the domain of the policy dynamics is restricted to the rectangle, [sL
1
, s�

1
] × [sL

2
, s�

2
]

for analytical simplicity.4 According to Theorem 2, the optimal trade policy oscillates
between two points, SA = (sA

1
, sA

2
) and SB = (sB

1
, sB

2
) where sA

1
= −sB

2
and sA

2
= −sB

1
.

We have already solved for the output quantities at each periodic point given in (14).
Indeed, the Cournot outputs at point SA are

xCA =
c2 − sA

2

((c1 − sA
1
) + (c2 − sA

2
))2

and yCA =
c1 − sA

1

((c1 − sA
1
) + (c2 − sA

2
))2

3This equation is obtained by setting the product of the derivatives of the best reply functions, r̄1(y)
and r̄2(x), evaluated at the Cournot point equal to −1.

4As can be seen in Fig. 2(A), any trajectory starting at a point outside SIV will enter SIV after
several iterations.
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and the Cournot outputs at point SB are

xCB =
c2 − sB

2

((c1 − sB
1
) + (c2 − sB

2
))2

and yCB =
c1 − sB

1

((c1 − sB
1
) + (c2 − sB

2
))2

.

Since the output dynamics depends on the policy dynamics but not vice versa, we
can be fairly certain that the output dynamics gives rise to a periodic cycle when the
trade policy has a period-2 cycle. We specify the parameter values as c1 = c2 = 1,
SA = (0.64,−0.4) and SB = (0.4,−0.64) and perform simulations. First of all, it can
be pointed out that the output equilibria, CA = (xCA, yCA) and CB = (xCB, yCB), are
locally asymptotically stable under these specifications if the trade policy is fixed since
the cost ratios are greater than 3− 2

√
2,

kA =
c1 − sA

1

c2 − sA
2

� 0.366 and kB =
c1 − sB

1

c2 − sB
2

� 0.257.

However, the trade policy is not fixed, it is switched from one periodic point to the other in
every period. Fig. 4 reveals that the output dynamics is represented by a period-2 cycle,
which is synchronized with the period-2 cycle of the optimal subsidy. Fig. 4(A) shows a
return map. The best reply functions of firm 2 are illustrated as mound-shaped curves and
the inner curve is shifted to the outer curve when the policy is switched from SA to SB.
In the same way, the best reply functions of firm 1 are illustrated as two upward sloping
curves and the shift from the left curve to the right is caused by the policy switching from
SA to SB. Here Ca and Cb are the two periodic points of the output cycle. Fig. 4(B)
depicts the time trajectory of output y. Contrary to our intuition, the periodic points of
the output cycle are not the Cournot points denoted by CA and CB in Fig. 4(A). The
reason is that dynamic equations of the outputs are switched from (x′, y′) = (r̄A

1
(y), r̄A

2
(x))

with SA to (x′, y′) = (r̄B
1
(y), r̄B

2
(x)) with SB at every iteration step where

r̄A
1
(y) =

√
y

c1 − sA
1

− y and r̄A
2
(x) =

√
x

c2 − sA
2

− x

and

r̄B
1
(y) =

√
y

c1 − sB
1

− y and r̄B
2
(x) =

√
x

c2 − sB
2

− x.

The periodic points Ca = (xa, ya) and Cb = (xb, yb) are the fixed points of the composite
functions of r̄A

i and r̄B
i for i = 1, 2,

xa = r̄A
1
(r̄B

2
(xa)), ya = r̄A

2
(r̄B

1
(ya)), xb = r̄B

1
(r̄A

2
(xb)) and yb = r̄B

2
(r̄A

1
(yb)).

We summarize these results as follows:

Theorem 5 If the firms are symmetric, the trade policies and the outputs are naively
adjusted and there is no policy lag, then the 4D dynamic system (18) gives rise to a
period-2 cycle of the outputs which is synchronized with the period-2 cycle of the trade
policies.
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Figure 4: Birth of a period-2 cycle.

We have assumed so far that there is no time lag in implementing the trade policy.
However, the government policy usually works with a time lag since there is an inevitable
delay between the subsidy decision and the actual payment which is the result of the
political process. To examine the effect caused by the policy delay, a 10-period lag is
introduced such that the trade policy is switched at every 10 periods. Simulation results
are illustrated in Fig. 5 where we use the same parameter specifications with the only
difference that the length of lag is changed to 10 from zero. In Figs. 5(A) and 5(B),
the output dynamics shows the cyclic behavior in the following way: it fluctuates around
xCA for 10 periods and then around xCB for the next 10 periods, after which it jumps
back to the original cyclic behavior. We have already seen that xCA and xCB are locally
stable if the trade policy is fixed. The cyclic behavior around each stationary point is a
dumping oscillation. When the policy is changed in the middle of the converging process,
the trajectory changes its direction and starts approaching a new equilibrium. As a
result, a new dumping oscillation is born, which is again interrupted before arriving at
the equilibrium by a change of the policy. A n-period time lag of the trade policy creates
a period-2n cycle. It fluctuates around one stationary point for n periods and then jumps
to a neighborhood of the other stationary point when the policy is changed. Then it
fluctuates around the new stationary state for the next n periods and jumps back to the
previous neighborhood when the policy is changed again. This recursive process repeats
itself. Dynamics with time lag can be summarized as follows:

Theorem 6 If the firms are symmetric, the policies and the outputs are naively adjusted
and there is a n-period policy lag, then the 4D dynamic system gives rise to a period-2
cycle of the trade policy and a period-2n cycle of the output.

If the policy is naively adjusted and the output is adaptively adjusted, then essentially
the same dynamics will be observed. In other words, as far as the policy is periodically
changed, the output dynamics is affected by these policy switching and exhibits periodic
behavior no matter which formation of the expectations is selected. If the policy is
adaptively adjusted, then the policy adjustment process converges to the stationary point
according to Theorem 2. We have, however, qualitatively different output dynamics, as
will be seen shortly. In this case we can suppose without loss of generality that the
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Figure 5: Birth of a period-20 cycle.

dynamic process of the trade policy is rapid and the firms receive the stationary values
of the trade policy from the beginning of the output dynamic process. This assumption
reduces the 4D dynamic system to the 2D output dynamic system (16) with s1 = se

1
,

s2 = se
2

and se
1

= −se
2
: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x′ =

√
y

c + se
2

− y,

y′ =

√
x

c − se
2

− x,

(19)

where c = c1 = c2.
5 The stability of system (19) depends on the actual cost ratio,

k =
c + se

2

c − se
2

(20)

Given c, k increases from zero to infinity as se
2

increases from −c to c. In linear model,
instability implies divergence. However this is not necessarily the case with nonlinear
models because the nonlinearities may prevent unstable trajectories from globally diverg-
ing. We restrict our analysis to the unstable case, henceforth, to examine what dynamics
the nonlinear output system can generate. In a linearized version of nonlinear output
dynamic system (19), loss of stability occurs when the modulus of a pair of complex roots
passes through 1, ∣∣∣∣∂x′

∂y

∂y′

∂x

∣∣∣∣ = 1.

Following [7] or rearranging the above equation shows that stability of the output is
violated if k ≤ 3 − 2

√
2 and the output trajectories are non-negative as far as k ≥ 4/25.

Therefore, the output stationary state becomes locally unstable but the trajectories are
nonnegative if

−21

29
c < se

2
< −

√
2

2
c. (21)

5It is possible to construct the dynamic system in terms of se
1. However, the results to be obtained are

qualitatively the same.
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Figure 6: One-parameter bifurcation diagram with respect to se
2
.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 � �
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s2

x

(b)

Figure 7: Bifurcation diagrams generated by system (22). (a) Two-parameter case. (b)
One-parameter case.

Here k = 3 − 2
√

2 if se
2

is equal to this upper bound which is the threshold of the loss of
stability and will be called the instability value and k = 4/25 if se

2
is equal to this lower

bound, which is the threshold of loss of nonnegativity and will be called the nonnegativity
value. When se

2
decreases from the instability value to the nonnegativity value in the

interval, the stationary state is destabilized and goes to chaos through a Neimark-Sacker
cascade as shown in Fig. 6 where c = 1 is selected.

Now we replace the naive expectation formation with the adaptive expectation forma-
tion by taking 0 < β1 < 1 and 0 < β2 < 1. The output dynamic system is⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x′ = (1 − β1)x + β1

(√
y

c + se
2

− y

)
,

y′ = (1 − β2)y + β2

(√
x

c − se
2

− x

)
.

(22)

This system is essentially the same as the one examined by Puu (2003). It is shown there
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that loss of stability under the adaptive expectation occurs when the cost ratio and the
speeds of adjustment satisfy the following relation:

(k − 1)2

4k
=

1

β1

+
1

β2

− 1 (23)

under which the determinant of the Jacobian matrix of the dynamic system (22) becomes
unity. To examine what dynamics can be generated, we simulate system (22) when the
adjustment speeds are identical (β1 = β2 = β). Taking the same parameter specifications
as in Fig. 6, we present one- and two-parameter bifurcation diagrams in Fig. 7. The
diagram in Fig. 7(A) has the optimal subsidy level to firm 2 (i.e., se

2
) on the horizontal

axis and the identical adjustment speed (i.e., β) on the vertical axis while the diagram
in Fig. 7(B) plots the values of x(t) against s2, fixing the value of β = 0.98. The one-
parameter diagram is obtained by increasing the value of se

2
along the dotted line at

β = 0.98 in the two-parameter diagram. Notice that the nonnegativity value of s2 is
−21/29 � −0.724 and the instability value is −√

2/2 � −0.707. Solving (23) for β and
substituting (20) provide the partition curve of the parameter space (se

2
, β),

β =
2(c − se

2
)(c + se

2
)

c2
. (24)

Given c, for all (se
2
, β) under the partition curve, the stability condition is satisfied and

this stable region is colored in red. For all (se
2
, β) above the curve, the stability condition is

violated but the nonlinearities of the dynamics system may prevent diverging trajectories.
The different colors of the regions correspond to the different periods of periodic cycles
up to period 16. The gray regions indicate that the period of the cycle is larger than 16 or
chaos emerges while trajectories become infeasible in the white region. Substituting 0.98
into (24) and solving the resultant equation for s2 gives the threshold value s2 ≈ −0.714
for which the stationary output loses stability, as can be seen in Figs. 7(A) and (B). We
summarize this result as follows:

Lemma 1 If the firms are symmetric and the trade policy is adaptively and rapidly
adjusted, then the adaptively adjusted output exhibits various dynamics ranging from a
period-4 cycle to chaotic fluctuations, depending on the values of (se

2
, β).

4.2 Asymmetric firms: c1 �= c2

We now turn our attention to the asymmetric firms with c1 < c2. We have already seen
that the dynamic process of the trade policy is stable and converges to the optimal points
given in (12),

se
1

= −sL
2

+ (c2 − c1) and se
2

= sL
2
,

where 0 > sL
2

> c2 − 2c1 due to Assumption 2. The corresponding optimal outputs are
obtained by substituting these optimal subsidies into the expressions in (15),

xC =
c2 − sL

2

4c2

1

and yC =
(2c1 − c2) + sL

2

4c2

1

.
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If we assume that the implementation of the trade policy has no time lags, then the output
dynamic system with β1 = β2 = 1 becomes⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x′ =

√
y

c1 − (−sL
2

+ c2 − c1)
− y,

y′ =

√
x

c2 − sL
2

− x.

(25)

Substituting se
1

and se
2

into the actual cost ratio provides

k =
2c1 − c2 + sL

2

c2 − sL
2

. (26)

It follows that, given c1 and c2, the actual cost ratio decreases to zero from (2c1−c2)/c2 > 0
if sL

2
decreases to its lower bound su

2
= −(2c1 − c2) from zero. Depending on the value of

sL
2
, the output dynamics can be destabilized. Furthermore, due to the nonlinearities of

(16), the output dynamics can exhibit a rich dynamics if sL
2

is in the interval

c2 − 50

29
c1 < sL

2
< c2 − 1

2 −√
2
c1. (27)

The upper bound value and the lower bound value of sL
2

make the actual cost ratio equal
to 3 − 2

√
2 and 4/25, respectively.

When the symmetric adaptive expectation formation is adopted (i.e., β1 = β2 = β <
1), the output dynamic system is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x′ = (1 − β)x + β

(√
y

c1 − (−sL
2

+ c2 − c1)
− y

)
,

y′ = (1 − β)y + β

(√
x

c2 − sL
2

− x

)
.

(28)

Solving (23) for β and substituting (26) yield the partition curve

β =
2(c2 − sL

2
)(2c1 − c2 + sL

2
)

c2

1

(29)

which divides the (sL
2
, β)-space into two parts: stable region in the right to the curve and

unstable region left.
It can be shown that dynamics generated by (19), respectively (22), are essentially

the same as dynamics generated by (25), respectively (28). Introducing the new variables
C = c1 and S = c1 − c2 + sL

2
reduces (25) and (28) to (19) and (22), respectively. One

system can be transformed to the other through variable changes. Thus both systems are
topologically conjugate to each other and generate qualitatively the same dynamics. In
particular, the instability value and the nonnegativity value of (25) can be obtained from
those values of (19) with C and S.

S = −21

29
C =⇒ sL

2
= c2 − 50

29
c1
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and

S = −
√

2

2
C =⇒ sL

2
= c2 − 1

2 −√
2
c1.

Furthermore the partition line, (24) with C and S, can be transformed to (29).

β =
2(C − S)(C + S)

C2
=⇒ β =

2(c2 − sL
2
)(2c1 − c2 + sL

2
)

c2

1

.

The equivalence of the dynamic systems implies that (25) generates the same dynamics
as illustrated in Fig. 6 with replacing the interval (21) with (27). Similarly, the output
dynamics by (28) is the same as illustrated in Fig. 7 with replacing the partition curve
(24) with (29). We can summarize these results as follows:

Lemma 2 If the firms are asymmetric, then the naively adjusted dynamic system (25)
starts the period-doubling bifurcation leading to chaos if sL

2
decreases from the instability

value of the interval (27) to the nonnegative value whereas the adaptively adjusted dynamic
system (28) generates complex dynamics involving chaos for (sL

2
, β) such as

β >
2(c2 − sL

2
)(2c1 − c2 + sL

2
)

c2

1

.

Lemma 1 is concerned with the output dynamics of the symmetric firms while Lemma 2 is
concerned with the output dynamics of the asymmetric firms. Notice that the results are
essentially the same, hence, the production cost differences do not affect the asymptotic
behavior of the unstable output dynamics if the trade policy is adaptively adjusted. These
results can be summarized as follows:

Theorem 7 If the optimal trade policy is asymptotically stable, then the output dynamic
system generates the same dynamics regardless of the symmetry or asymmetry of the
firms.

The output dynamic system with adaptive expectation might lead to negative quanti-
ties or complex values in numerical simulations. To avoid such economically unfavorable
phenomena, we preform the simulations with the modified output dynamic equations
that take care of the nonnegativity of the output trajectories. The first modified system
including the nonnegativity conditions is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x′ = (1 − β)x + βMax

[
0,

√
y

c1 + se
2

− y

]
,

y′ = (1 − β)y + βMax

[
0,

√
x

c2 − se
2

− x

]
.

(30)

Taking c1 = c2 = 1, the two-parameter bifurcation diagram is shown in Fig. 8(A) in which
the colored periodicity regions take ”sausage-shaped”. This is not the only way to prevent
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Figure 8: Two-parameter bifurcation diagrams with the nonnegativity conditions. (a)
Dynamic system (30). (b) Dynamic system (31).

negative quantities. Following Yousefi (2002), we can use the alternative formulation

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x
′

= Max

[
0, (1 − β)x + β

(√
y

c1 + se
2

− y

)]
,

y
′

= Max

[
0, (1 − β)y + β

(√
x

c2 − se
2

− x

)]
.

(31)

Fig. 8(B) shows the two-parameter bifurcation diagram generated by (31). Apparently
there are many differences between these bifurcation diagrams, which imply that the
asymptotic behavior of (30) is different from the asymptotic behavior of (31). However,
our main finding that the adaptive systems can generate rich dynamics still holds.

5 Conclusion

In this paper, we construct a three-country model with two governments and two firms
and consider the dynamic behavior of the sequential subsidy game in which the govern-
ments determine their optimal trade policies and then the firms determine their optimal
outputs. We first deal with the governments’ decision process from static and dynamic
points of view. We find that the cost difference and the expectation formation of the
governments are crucial in characterizing the optimal trade policy. In short, if the firms
are symmetric, then there are infinitely many optimal policies (Theorem 1). A symmetric
period-2 cycle of the trade policy emerges if naive adjustment process is adopted (Theo-
rem 2) and a trajectory converges to one of the optimal policies if adaptive adjustment
process is used (Theorem 3). If the firms are asymmetric, then a unique optimal policy
exits and is asymptotically stable regardless of the expectation formations (Theorem 4).
We then deal with the output dynamics and demonstrate that the expectation formation
of the government matters but the cost difference does not matter. If the trade policy
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is adaptively adjusted, then an output trajectory exhibits periodic cycle which is syn-
chronized with the period-2 cycle of the optimal trade policy even if the Cournot output
equilibrium is locally stable (Theorems 5 and 6). If the trade policy is adaptively adjusted,
then complex output dynamics involving chaos emerges regardless of the expectation for-
mation (Theorem 7). Finally it is worth mentioning that complex dynamics can be born
under a small or even zero difference of the production costs in our model while much
larger difference is required to generate chaotic dynamics in nonlinear duopoly models
with isoelastic price function.
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1 Introduction

Let f : I = [0, 1] → I be a continuous map. In the huge list of conditions which are
equivalent to zero entropy of a continuous interval map (see e.g. [14]), there were three,
(C2)–(C4), included for a long time:

(C1) The map f has zero topological entropy (see [1] for the definition).

(C2) The map f |P(f) is Lyapunov stable (it has equicontinuous powers).

(C3) The set R(f) is a Fσ set.

(C4) The set P(f) is a Gδ set.
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Recall that the orbit of a point x ∈ I is given by the sequence (fn(x)), where f 1 = f
and fn = f ◦ fn−1 for n > 1. A point x ∈ I is periodic provided there is n ∈ N such
that fn(x) = x. The smallest positive integer n holding this condition is called the period
of x. The limit points of the orbit of x is called the ω–limit set of x under f , denoted
by ω(x, f). A point x is called recurrent if x ∈ ω(x, f). Denote by P(f) and R(f) the
sets of periodic and recurrent points of f , respectively. Recall that a subset A is a Gδ set
provided it is equal to the intersection of a countable collection of open subsets. The set
F is an Fσ if it is the countable union of closed sets.

At the beginning of XXI century, the equivalence among these properties were proved
to be false. In [15] was proved that condition (C1) was not equivalent to (C2), although
condition (C2) always implies (C1). A similar result was proved in [17] concerning condi-
tions (C1) and (C3). Finally, in [16], the equivalence between (C1) and (C4) is disproved
by proving that (C1) does not imply (C4), and in [11] has been recently proved that (C4)
does not imply (C3).

If we think about these properties for a while, we see that conditions (C3) and (C4)
are related to the topological structure of two sets from the topological dynamics of f .
Property (C2) is a dynamical property itself, because states that the dynamics of f |P(f)

is quite simple. Let us point out that, recently, in [5] and [6] the dynamics of f has been
studied from the set of periodic points of the map f .

The maps of the above mentioned counterexamples for (C3) and (C4) were obtained as
functional limit of continuous maps and hence, they are not piecewise monotone. Recall
that f : I → I is piecewise monotone if there is a partition 0 = x0 < x1 < ... < xn = 1 of I
such that f |(xi,xi+1)

is monotone for i = 0, ..., n−1. This fact was not strange for conditions
(C3) and (C4), because these equivalences are true for such kind of maps (see [17]). The
counterexample on property (C2) was constructed by a so–called weakly unimodal map,
which has two pieces of monotonicity. The aim of this paper is to go further and proving
the following result.

Theorem 1 Let f : I → I be a piecewise monotone continuous map. Then the map
f |P(f) is Lyapunov stable if and only if f is not chaotic in the sense of Li and Yorke.

Recall that a continuous interval map f is chaotic in the sense of Li and Yorke (LY–
chaotic) if there is an uncountable set S ∈ I such that

0 = lim inf
n→∞

|fn(x) − fn(y)| < lim sup
n→∞

|fn(x) − fn(y)|,

for any x, y ∈ S, x �= y. In addition, we say that f is LY–simple if for any x ∈ I and any
ε > 0, there is a periodic point y such that lim supn→∞

|fn(x) − fn(y)| < ε.
Hence, we can add our main result to the following one. First, we recall that ω(f) =

∪x∈Iω(x, f). Ω(f) denotes the set of nonwandering points, that is, those points x ∈ I
such that for any ε > 0 there is n > 0 such that (x − ε, x + ε) ∩ fn(x − ε, x + ε) �= ∅.
AP(f) is the set of almost periodic points for which for any ε > 0 there is k > 0 such that
fkn(x) ∈ (x − ε, x + ε) for any n ≥ 0. For the definition of topological sequence entropy,
which is an extension of topological entropy, see [10] or [9].

Corollary 1 Let f : I → I be a piecewise monotone continuous map. The following
statements are equivalent:
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(a) The map f is not LY–chaotic.

(b) The map f is LY–simple.

(c) ω(f) = {x ∈ [0, 1] : limn→∞ f 2
n

(x) = x}.

(d) AP(f) = ω(f).

(e) The map f |ω(f) is Lyapunov stable.

(f) The map f |Ω(f) is Lyapunov stable.

(g) The topological sequence entropy of f , hA(f), is zero for any increasing sequence of
integers A.

(h) The map f |P(f) is Lyapunov stable.

We remark that the properties (b)–(g) in Corollary 1 are equivalent to (a) without
the assumption that f is piecewise monotone as one can see in the references [7], [9] and
[8]. The equivalence between properties (a) and (h) comes from Theorem 1. On the other
hand, there is an example in [7] proving that condition (h) cannot imply (a) without the
assumption that f is piecewise monotone.

We will prove our main result in next section.

2 Proof of Theorem 1

Before proving our main result, we will show the following one, whose proof is immediate.

Proposition 2 Let f : [0, 1] → [0, 1] be non LY–chaotic. Then f |P(f) is Lyapunov stable.

Proof. Since f is not chaotic, by [7], we have that f |ω(f) is Lyapunov stable. The
result follows because P(f) ⊂ ω(f).�

Proof of Theorem 1. In view of Proposition 2, we just need to prove that if f is
LY–chaotic, then f |P(f) cannot be Lyapunov stable. Recall that a LY–chaotic map with
zero topological entropy has an infinite ω–limit set ω(x, f) with the following properties
(see [18]):

• There is a nested sequence of intervals J0 ⊃ J1 ⊃ ... ⊃ Jn ⊃ ... such that f 2n

(Jn) =
Jn and

ω(x, f) ⊂
⋂
n≥0

2
n
−1⋃

j=0

f j(Jn).

• ω(x, f) contains two f–nonseparable points u, v, that is, for any n ≥ 1, u and v are
contained in the same periodic interval f j(Jn).
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Now, we consider the set Σ = {0, 1}N, and for any α ∈ Σ and n ∈ N, let α|n =
(α1, ..., αn). We write J0|n

= Jn, where 0 = (0, 0, ...). Then, denote by Jα|n = f j(Jn)
in such a way that α|n = aj

n(0|n), where an(1, 1, ..., 1) = 0|n and an(α|n) = α|n ∗ 1 for
α|n �= (1, ..., 1), where ∗ denotes the operation which adds 1 to α1; if α1 + 1 = 1, then
an(α|n) = (1, α2, ..., αn), if α1 + 1 = 2, then we put 0 in the first component and add 1
to α2 and repeat this porcces untill αj will be 1. For instance a3(1, 1, 0) = (0, 0, 1) and
a3(0, 1, 1) = (1, 1, 1). Clearly, for α ∈ Σ and n < m, we have that Jα|m ⊂ Jα|n. Denote by
Jα = ∩n≥1Jα|n

For a subinterval J , |J | will be its length. Now, let δ > 0. Let Aδ = {α ∈ ⊀ : |Jα| ≥ δ}.
Now, we claim that there exists an nδ ∈ N such that for any n ≥ nδ it is held

• if α ∈ Aδ then max{|J+

α|n
|, |J−

α|n
|} < δ, where J+

α|n
and J−

α|n
are the right and left

side subintervals of Jα|n \ Jα.

• if θ ∈ {0, 1}n and α|n �= θ for any α ∈ Aδ then |Jθ| < δ.

To prove our claim, let α ∈ Aδ. Since (Jα|n)∞n=1
decreases to Jα, if n is large enough

then max{|J+

α|n
|, |J−

α|n
|} < δ. Since Aδ is finite we have max{|J+

α|n
|, |J−

α|n
|} < δ for all

α ∈ Aδ and all sufficient large n. Now, we show that if n is large enough then |Jθ| < δ
for any θ ∈ {0, 1}n with the property α|n �= θ for all α ∈ Aδ. Suppose the contrary. Then
there are a strictly increasing sequence (nj)

∞

j=1
and sequences θj ∈ {0, 1}nj such that

|Jθj | ≥ δ and α|j �= θnj for any α ∈ Aδ. Let xj be the midpoint of Jθj . It is clearly not
restrictive to assume that (xj)

∞

j=1
converges to some x and |xj −x| < δ/2 for any j. Since

for any fixed n all intervals Jθ, θ ∈ {0, 1}n, are pairwise disjoint, this means that each
pair Kθj and Kθj+1 has non-empty intersection, which clearly implies Jθj+1 ⊂ Jθj for any
j and hence the existence of an α ∈ Σ with α|nj

= θj for any j. Due to the definition of
the intervals Jθj , α cannot belong to Aδ. However, Jα =

⋂
∞

n=1
Jα|n =

⋂
∞

j=1
Jθj so |Jα| ≥ δ,

a contradiction.
Now, fix ε = |u − v|. Since P(f) = ω(f) (cf. [4]), there are sequences of periodic

points un and vn which converge to u and v, respectively. Now, fix δ > 0, δ < ε, and
Aδ as before. There is n0 ∈ N such that un and vn are contained in J+

α|n
∪ J−

α|n
, where

α ∈ Σ is such that u, v ∈ Jα. Since un and vn are periodic points, there is θ ∈ {0, 1}n,
n ≥ max{nδ, n0} such that f j(un) and f j(vn) belong to Jθ for some 0 < j < 2n and such
that |Jθ| < δ. Hence |f j(un)− f j(vn)| < δ and |f 2n

−j(f j(un))− f 2n
−j(f j(vn))| > ε, which

proves that f |P(f) cannot be Lyapunov stable.�

Remark 3 Recall that a wandering interval of f is an interval whose iterates are pairwise
disjoint and such that neither of the orbits of its points is attracted by any periodic orbit.
In fact if a map f ∈ C(I) of zero entropy is chaotic then it must possess a wandering
interval (see e.g. [2]). In many “natural” maps (including all analytic ones) wandering
intervals cannot exist [12] and then they cannot be LY–chaotic. So, we wonder about the
validity of Theorem 1 under regularity conditions of f , for instance for C1 maps.
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Abstract

Background: Recent work suggests that pulse pressure may be a marker of
temporal changes in central blood volume, facilitating the non-invasive detection
hemorrhage and the onset of hemorrhagic shock. A new approach to tracking blood
pressure, and pulse pressure specifically is presented that is based on a new form



Velocity/pressure response curve characterization 29

of pulse pressure wave analysis called Pulse Decomposition Analysis (PDA). The
premise of the PDA model is that the peripheral arterial pressure pulse is a super-
position of five individual component pressure pulses, the first of which is due to
the left ventricular ejection from the heart while the remaining component pressure
pulses are reflections and re-reflections that originate from only two reflection sites
within the central arteries. The hypothesis examined here is that the PDA param-
eter T13, the timing delay between the first and third component pulses, correlates
with pulse pressure. Furthermore the comparison of experimental and model pre-
dictions provides insight into the pressure/velocity responses of the different arterial
segments that the iliac reflection pulse (P3) traverses.

T13 was monitored along with blood pressure, as determined by an automatic
cuff and another continuous blood pressure monitor, during the course of lower body
negative pressure (LBNP) sessions involving four stages, -15 mmHg, -30 mmHg, -45
mmHg, and -60 mmHg, in fifteen subjects (average age: 24.4 years, SD: 3.0 years;
average height: 168.6 cm, SD: 8.0 cm; average weight: 64.0 kg, SD: 9.1 kg).

Results: Statistically significant correlations between T13 and pulse pressure as
well as the ability of T13 to resolve the effects of different LBNP stages were estab-
lished. Experimental T13 values were compared with predictions of the PDA model.
These predictions revealed distinctly different response characteristics for the three
major arterial segments that constitute the path of the P3 component pulse. The
LBNP interventions resulted in pulse pressure changes of up to 7.8 mmHg (SE =
3.49 mmHg) as determined by the automatic cuff. Corresponding changes in T13
were a shortening by -72 milliseconds (SE = 4.17 milliseconds). In contrast to the
other two methodologies, T13 was able to resolve the effects of the two least nega-
tive pressure stages with significance set at p < 0.01.

Conclusions: The agreement of observations and measurements provides a pre-
liminary validation of the PDA model regarding the origin of the arterial pressure
pulse reflections. The proposed physical picture of the PDA model is attractive be-
cause it identifies the contributions of distinct reflecting arterial tree components to
the peripheral pressure pulse envelope. The results presented here suggest that the
model may also be able to provide insight into the dynamic response characteristics
of certain arterial tree sections, with important implication for the assessment of
their health.

Keywords: Hemorrhage, Arterial Pulse Analysis, Pulse Decomposition Analysis,
Pulse Pressure.
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1 Introduction

The objective of this work is the introduction of a new form of pulse pressure wave analy-
sis, called Pulse Decomposition Analysis (PDA). As evidenced by the number of different
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commercial and academic efforts, pulse analysis already provides access to the tracking of
some cardiovascular parameters, such as cardiac output, left ventricular ejection etc. that
are otherwise accessible only via either invasive means or sophisticated but also cumber-
some monitoring modalities. As the work presented here suggests, a further refined pulse
analysis model holds the promise of providing 1. access to additional vascular parame-
ters and, perhaps equally important, their dynamic response characteristics and 2. the
tracking of blood pressure without the physically restrictively engaging, and consequently
uncomfortable, approaches that current continuous blood pressure monitors employ. Of
particular interest in the context of tracking blood pressure is pulse pressure, the motiva-
tion being that pulse pressure appears to be a sensitive as well as specific marker for the
detection of hemorrhage, [1-2] which remains one of the leading causes of death on the
battlefield as well as in civilian trauma cases while also being highly preventable if inter-
vention can be implemented [3-4]. However, detecting progressive hemorrhage requires
resolution of changes on the order of a few mmHg in pulse pressures of, normally, 35-50
mmHg. Given the separate and unequal uncertainties in determining systole and diastole,
using the best brachial cuff techniques, [5] such determinations are by and large out of
reach even in controlled environments.

In response we present here the PDA approach, which not only offers the capability
to continuously track blood pressure but to also provide insight into the response char-
acteristics of certain arterial tree segments. The analysis of the arterial pressure pulse
has been the subject of many studies, with works whose results are still relevant today
dating from the 1800s and the early 1900s, [6-8] as well as a significant body of work
that has been published over the past 40 or so years [9-16]. PDA presents the exten-
sion of the findings of a number of studies that have utilized ballistocardiography and
invasive central artery manometers to track mechanical events such as heart contractions
and pressure pulse reflections in the central arterial tree, to the arterial periphery. These
studies [17-19] have confirmed the existence of two major reflection sites in the central
arteries. The first reflection site is the juncture between thoracic and abdominal aorta,
which is marked by a significant decrease in diameter and a change in elasticity and the
second site arises from the juncture between abdominal aorta and common iliac arteries.
In what follows these reflection sites are respectively referred to as the renal and the iliac
reflection site. A consequence of these reflection sites are reflected arterial pressure pulses
that counter-propagate to the direction of the single arterial pressure pulse, due to left
ventricular contraction, that gave rise to them. Referring to Fig. 1, the downward trav-
eling primary pressure pulse # 1 gives rise to the upward traveling # 2 and # 3 pulses
that are respectively due to the renal and the iliac reflection sites on which the # 1 pulse
impinged.

As these reflected # 2 and # 3 pressure pulses reach the aortic arch, they will enter
the subclavian arteries and head into the arterial periphery of the arm, following the #
1 pressure pulse that, besides traveling down the aorta, also entered the arm complex
arteries. The # 2 and # 3 pulses will do so with certain time delays because of the extra
traversal of the central arteries.

The # 2 pulse is commonly known as the second systolic peak. We refer to it as the
renal reflection and it follows the primary ejection pulse ( # 1) into the arterial periphery
of the arm at delays of between 70-140 milliseconds. The pulse labeled # 3 in Fig. 1
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Figure 1: Sketch of the aorta/arm complex arterial system and its effect on the arterial
pressure pulse line shape that is observed at the radial/digital artery. Two reflection
sites, one at the height of the renal arteries, the other one in the vicinity of the iliac
bifurcation, give rise to the reflected pulses (gray) that trail the primary left ventricular
ejection (black). (from [31]).

is the much larger iliac reflection, which follows the # 1 pulse at delays of 180 to 400
milliseconds.

The described scenario succinctly explains the presence of three component pulses in
the pressure pulse envelope that is observed in the arterial periphery of the arm, such
as at the radial or digital arteries. In fact, there are additional component pulses. The
presence of re-reflections between the central reflection sites has been previously suggested
[20]. The physical picture is one where the iliac reflection pulse, in its travel up the aorta,
re-reflects off the renal reflection site, and this re-re-reflection traveling downward, once
again reflects off the iliac reflection site to follow the first three components pulses. With
dramatically diminishing amplitude the scenario repeats for the fifth component pulse.
These higher-order reflections are less relevant for quantitative analysis due to their poorer
signal to noise characteristics and the fact that they are easily swallowed by the pulse
envelope of the next cardiac cycle unless the heart rate is very low.

Based on these considerations the structure of the radial/digital arterial pressure pulse
can be explained entirely by the interaction of the primary left ventricular ejection pressure
pulse with two aortic reflection sites. We now hypothesize that it is possible to determine
trends in aortic blood pressure through an analysis of the pulse envelope obtained in the
arterial periphery of the arm.

The PDA model presented here analyzes the arterial pulse as observed on the lower
arm by isolating, identifying and quantifying the temporal positions and amplitudes of
the renal reflection pulse (# 2) and the iliac reflection pulse (# 3), each relative to the
primary systolic pulse (# 1), within the pulse shape envelope of an individual cardiac
cycle. The models predictions and experimental studies show that two pulse parameters
are of particular importance. One parameter is the ratio of the amplitude of the renal
reflection pulse (# 2) to that of the primary systolic pulse (# 1). These amplitudes,
labeled P1 and P2, are indicated to the left of the arterial pressure pulse envelope. This
parameter is herein referred to as the P2P1 ratio and it tracks changes in central beat-by-
beat systolic pressure. The second parameter is the time difference between the arrival of
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the primary systolic (# 1) pulse and the iliac reflection (# 3) pulse. This parameter is
referred to as T13, as indicated in Fig. 1, and it tracks changes in arterial pulse pressure,
also beat-by-beat.

It is the aim of this paper to validate the described arterial pressure pulse reflection
scenario through the presentation of experimental data collected in the context of simulat-
ing central hemorrhage and its comparison with predictions of the PDA pulse propagation
model. Specifically, our hypothesis is that the time delay between the primary component
pulse (# 1) and the iliac reflection pulse (# 3), T13, correlates with pulse pressure.

We report here the results of monitoring the evolution of the PDA parameter T13
during the course of lower body negative pressure (LBNP) sessions. LBNP is an estab-
lished technique used to physiologically stress the cardiovascular system. It has been
used to simulate gravitational stress and hemorrhage, alter preload, and to manipulate
baroreceptors [21]. LBNP was chosen for this project because it has been shown to be
very effective at modulating pulse pressure, thereby providing a means to validate the
equivalent PDA arterial pulse parameter, T13.

2 Patients and Methods

After IRB approval, tests of the CareTaker system, which is the hardware implementation
of the PDA model that is described in more detail below, were performed at the Cardio-
vascular Physiology Laboratory of the University of British Columbia on fifteen healthy
volunteers (average age: 24.4 years, SD: 3.0 years; average height: 168.6 cm, SD: 8.0 cm;
average weight: 64.0 kg, SD: 9.1 kg) whose lower bodies, from the height of the iliac crest
downwards, were subjected to increasingly negative pressures. A number of studies have
demonstrated that it is possible to simulate significant internal hemorrhage using LBNP.
Negative pressures of 10 − 20 mmHg correspond to 400 to 550 ml of central blood loss,
20 − 40 mmHg correspond to 500 to 1000 ml, and negative pressures in excess of −40
mmHg correspond to blood losses exceeding 1000 ml [22].

The subjects were subjected to four stages of negative pressure, −15 mmHg, −30
mmHg, −45 mmHg, and −60mm Hg, each stage lasting typically about 12 minutes.
The blood pressure was monitored with an automatic cuff (BP TRU Automated Non-
Invasive Blood Pressure Monitor (model BPM-100), VSM MedTech Devices Inc.) set
to record blood pressures every three minutes, resulting in typically four readings per
LBNP setting as well as an Ohmeda 2300 Finapres, and a pulse oximeter (Ohmeda Biox
3740 Pulse Oximeter, BOC Health Care) monitored oxygen saturation. The CareTaker
system collected arterial pulse shapes beat-by-beat via a finger cuff attached to the central
phalange of the middle digit. Four subjects became presyncopal and could not complete
the -60 mmHg LBNP stage.

2.1 CareTaker Device

The hardware platform that provides the arterial pulse signal for the PDA algorithms
analysis is the Care-Taker device (Empirical Technologies Corporation, Charlottesville,
Virginia). It is a physiological sensing system whose three basic physical components are
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a sensing pad such as a finger cuff that couples to an arterial pressure point, a pressure
line that pneumatically telemeters the pulsations, and a custom-designed piezo-electric
pressure sensor that converts the pressure pulsations, using transimpedance amplification,
into a voltage signal that can be measured, digitized, transmitted and recorded. The cou-
pling to the artery is accomplished using palpation coupling, such as at the radial artery,
or approximate hydrostatic coupling, such as at the digital arteries. The completely self-
contained device wirelessly transmits its signal representing the arterial pulse to a PC
computer using the Bluetooth protocol. The device is not occlusive as it operates at a
coupling pressure of about 40 mmHg. Another important characteristic of the device is
that the signal it provides, sampled at 512 Hz, is the time derivative of the arterial pulse
signal. The derivative provides significant signal to noise advantage and lowers the reso-
lution requirements for digital acquisition of the signal because the derivative eliminates
signal offsets. Because of the short time constants associated with its implementation,
it also offers very short recovery times after signal disruptions. That is, in the absence
of offsets due to the differentiation, the signal is always clamped to the signal base line,
which in turn allows for increased amplification. Consequently the full digitization range
of the analog to digital converter (A/D) can be used for the signal amplitude, as opposed
to signal amplitude plus offsets.

2.2 The PDA model

The existence of two distinct central pressure pulse reflection sites make it is possible to
propose a simple model of the arterial paths that the primary pulse and its reflections tra-
verse and to compare its predictions with observations regarding the relative arrival times
of the different components pulses. The models equations, which have been presented
elsewhere [31], predict the time of arrival of each individual component pulse, subject to
the total distance that the pulse has traveled and the pressure-dependent pulse propaga-
tion velocity in each arterial segment. The pressure dependence of the pulse propagation
velocity is implemented using the Moens-Korteweg [23] equation, which relates pressure
and velocity.

Another critical feature of the model is that R2, the renal reflection coefficient, is
dependent on systolic pressure. The motivation for this is based on the following consid-
eration. As discussed, the renal reflection (P2 pulse) originates at the junction between
thoracic and abdominal aorta, a junction that is characterized by a significant change in
arterial diameter. Since the thoracic aorta is the softest artery in the body, as evidence
by the fact that it exhibits the lowest pulse pressure propagation velocities (4 − 5 m/s)
and much more extensible than the abdominal aorta, increasing peak pressure, or systole,
will enlarge the diameter mismatch, giving rise to a more pronounced renal reflection
pulse amplitude while falling systole will produce the opposite effect, an effect observed
in manipulative experiments performed by Latham [17]. The critical insight then is that
the amplitude of the renal reflection will increase relative to the amplitude of the primary
systolic (P1 pulse) peak because, while both component pulses travel the arteries of the
arm complex, and are therefore both subject to the pulse narrowing and heightening due
to the taper and wall composition changes of the peripheral arteries, only the renal reflec-
tion will have sampled the pressure-induced aortic impedance mismatch changes. This
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Figure 2: Relative amplitudes and velocity/pressure relationships of the component
pulses. # 2’s amplitude and propagation velocity can change significantly due to the
pressure dependence of R2, the renal reflection coefficient. (from [31]).

establishes the motivation for taking the ratio of the amplitudes of the # 2 and the # 1
pulse, which is P2P1.

A similarly physical argument can be made for the difference in arrival times of the
primary pulse (# 1) and the iliac reflection (# 3), or T13. The difference in the arrival
times of the primary arterial pulse, that is the left ventricular ejection, and the iliac reflec-
tion pulse is determined by the differential velocities with which both pulses propagated
along their arterial paths. In the case of the iliac reflection the path length is longer than
that of the primary pulse by almost twice the length of the torso. More importantly,
both pulses travel at different velocities because their pressure amplitudes are different.
Specifically, the iliac reflection pulse amplitude, which is determined by the reflection
coefficient of the iliac reflection site, is on the order of 40 percent of pulse pressure. This
point is graphically made in Fig. 2, Both pulses therefore load the arterial wall differently
during their arterial travel, as a result of which their propagation velocities are different.
The second insight is that, because the pressure/velocity response curve is non-linear,
a result known since the 1960s based on Anlikers work, [24] both pulses accelerate and
decelerate at different rates as the pressure rises and falls. The primary pulse experiences
the highest changes in velocity as a function of changes in blood pressure because it is
subject to the steepest section of the pressure/ velocity response curve, while the iliac
pulse, running at much lower pressure, changes velocity much more gradually. Changes
in the time of arrival therefore then reflect changes in the differential arterial pressure
that the two pulses experience. While this differential pressure is not exactly pulse pres-
sure, that is the difference between the full pulse arterial pulse height and the diastolic
pressure floor, it represents about 60-70 percent of it, assuming the previously stated iliac
reflection coefficient.

Fig. 2, presents a graphic display of the relative amplitudes of the left ventricular
ejection (# 1) and the trailing reflection pulses and their resulting relative positions on
the pulse propagation velocity curve, which is highly pressure dependent. As a result the
arrival times of the different pulses are highly pressure dependent, a point that is clarified
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by Fig. 3, which presents the pulse travel times, from bottom to top, respectively, of the
primary ejection pulse (# 1), the renal reflection (# 2), and the iliac reflection (# 3).
The iliac pulses arrival time shortens only slightly with increasing pressure because its
amplitude remains close to the diastolic pressure regime. The renal reflection peaks arrival
time (middle) experiences significant non-linearity because the reflection coefficient, R2,
is highly pressure dependent. The left ventricular ejection (# 1, bottom curve) has the
highest amplitude and samples the steepest section of the pressure/velocity curve and is
therefore most pressure dependent. Using Youngs moduli obtained from the literature
and letting the model fit R2 as well as the velocities of the primary arterial path ways it
is then possible to compare experimental data with model predictions.

Figure 3: left graph (from [31]): Arrival times, as predicted by PDA model, of the three
component pulses, from bottom up, # 1 (left ventricular ejection), # 2 (renal reflection),
and # 3 (iliac reflection). Right graph: the effect of replacing the dynamic response of
the renal reflection coefficient R2, shown in Fig. 12, with a constant reflection coefficient
of 0.25.

Fig. 3, displays the fact that human arterial pathways, for the average height popu-
lation we have studied, are generally very short relative the distances the arterial pulse
traverses within a cardiac cycle. Typical arterial pulse propagation velocities range, for
healthy and unstressed arteries, from 4 − 9 m/s. This fact influences particularly the
arrival time of the # 1 pulse profoundly. In the lower pressure range, which is the pres-
sure regime that was examined here, the # 1 pulse pulls away from the # 2 and # 3
reflection pulses, as evidenced by the fact that its arrival time shortens significantly faster
with increasing pressure than the arrival times of # 2 and # 3. Consequently, in this
pressure range, T13 would be expected to widen with increasing pressure and shorten
with decreasing pressure. Fig. 3, therefore provides a quantitative basis for why T13 is
hypothesized to be directly dependent on blood pressure changes in the blood pressure
regime that was examined here.

As the pressure continues to increase, however, the arrival time of the primary #
1 pulse saturates as it runs out of arterial runway. Consequently further increases in
arterial pulse propagation velocity do not result in a further shortening of the arrival
time. Meanwhile the # 3 pulse continues to accelerate with increasing pressure, narrowing
the T13 time delay in this high-pressure regime. The details of the pressure-dependent
evolution of the arrival time curves are critically dependent on the choice of different
velocity profiles for the different arterial sections, a point that is discussed later.
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2.3 Pulse Decomposition Algorithm (PDA)

The algorithm that is based on the pulse analysis model just presented encompasses the
following components:

1. A peak finder that identifies heartbeats in the derivative data stream.

2. A differentiator that produces the second derivative of the detected heart beat which
is then used to find the inversions corresponding to the locations of the component
pulses.

3. A digital integrator, implemented as a Bessel filter, that generates the integrated
pulse wave form from the differentiated raw signal stream, and from which relative
component pulse amplitudes are determined and 4. a low-pass filter that allows
identification of the primary systolic peak. Furthermore the frequency content of
the data stream is continuously analyzed in order to calculate signal to noise (S/N)
figures of merit that determine whether signal fidelity is sufficiently high to permit
peak detection and analysis.

The detection efficiency of the heart beats was typically on the order of 92 %, as
evidenced by visual inspection of inter-beat spectra which readily reveal missed beats.
Detection was typically poorest at the highest negative pressure (−60 mmHg) because
of significantly diminished pulse amplitude.

Once the temporal locations of the reflection component pulses and the systolic peak
are identified, the T13 interval, the time delay between systolic (P1) and iliac peak (P3),
is calculated. The P2P1 ratio is calculated using the amplitudes of the P2 peak and the
systolic peak, in the integrated pulse spectrum. Detection efficiency of the component
pulses was on the order of 90 %. Detection again was poorest at the highest negative
pressure because of diminished pulse amplitude.

2.4 Statistical Analysis

We present regression coefficients between LBNP levels and pulse pressure responses of
the three measurement systems. In order to compare relative sensitivities of the three
systems to changes in pulse pressure we present results of different repeated measures
ANOVA analysis, which were performed using the Minitab statistical software (Release
14, Minitab Ltd.). Data are presented as means +- SE unless specified otherwise.

3 Results

3.1 Comparison of Pulse Pressure Changes

In Fig. 4 we present an example of the evolution of arterial pressure pulse line shape
changes for the 6 stages of an hour-long LBNP session (right-hand graph B) as well as
the T13 trace for the entire session (left graph A). The subject in this case was a 31
y. female. The time evolution of the presented pulse line shapes is downward, starting
at the top at atmospheric pressure, and ending with a pulse line shape obtained after
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the LBNP chamber was vented from −60 mmHg back to atmospheric pressure. Each
pulse line shape represents a 10-pulse average. The dynamic range of the iliac and renal

Figure 4: Relative amplitudes and velocity/pressure relationships of the component
pulses. # 2’s amplitude and propagation velocity can change significantly due to the
pressure dependence of R2, the renal reflection coefficient. (from [31]).

peak positions is indicated by the downward sweeping arrows, while the position of the
primary systolic peak (# 1) is indicated by the vertical solid arrow. The narrowing of
the time interval between iliac and systolic component pulses with decreasing negative
pressure is clearly visible. Furthermore, while the heart rate also changed, as indicated
by the shortening inter-beat interval, it is clear that the rates of change for T13 and heart
rate are different, i.e. the inter-beat interval narrowed faster than T13. A further point
of interest is the shape of the arterial pressure pulse after venting, which in all subjects
caused a significant rise in systolic blood pressure, as determined using the conventional
blood pressure monitors. The pressure pulse line shape in question has the typical pulse
shape associated with a positive augmentation index, which is defined as (height of # 2
pulse - height of # 1 pulse)/maximum overall amplitude [25]. A positive augmentation
index is usually taken to be indicative of arterial aging, which, given the subjects age,
is unlikely to be the case. This subjects pulse shape returned, along with normalizing
systole, within minutes to the original line shape (top trace in Fig. 4B.)

While the results displayed in Fig. 4 exhibited a significant change in heart rate along
with the change in T13, this was not a general observation. Figure 5 presents the results
regarding inter-beat interval and T13 for subject # 9, a 24 y. male, who did not exhibit
any appreciable change in heart rate until venting. The narrowing of T13 with decreasing
negative pressure, however, matched those of all subjects.

Fig. 6 displays a representative side-by-side comparison of pulse pressures obtained
with the automatic cuff (left graph) and the Finapres (center graph), as well as the
evolution of the T13 parameter over the course of the LBNP session of subject # 3,
(right graph). The general absence of a discernible trend in the readings of the cuff with
progressing hypovolemia was typical for all data runs.

Fig. 7 presents comparative overall results for pulse pressures and T13 as a function of
progressive decreasing negative pressure. Specifically, Fig. 7A presents the overall pulse
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Figure 5: Temporal evolution of the inter-beat interval and T13 over the course of the
LBNP session of subject # 9, 24 y. m., In this subject the narrowing of T13 was observed
without any change in heart rate until venting. (from [31]).

pressure results of the automatic pressure cuff while Fig. 7B presents the overall results
for T13. Fig. 7C. presents overall pulse pressure results for the Finapres.

The ability of the four measurement methods to resolve the effects of the different
LBNP stages at a statistically significant level varied. While the PDA T13 parameter
was able to resolve each of the four LBNP stages relative to atmospheric pressure, neither
the Finapres nor the cuff were able to resolve the stages with the two least negative
pressures (−15 & −30 mmHg), corresponding to the smallest changes in pulse pressure,
with significance set at p < 0.01. Heart rate, as a detection modality for resolving the two
least negative pressure LBNP stages, almost reached statistical significance, performing
significantly better than the Finapres or the cuff. Table 1 presents the results of the
ANOVA analysis.

Table 1: ANOVA: PDA, Finapres, Cuff versus LBNP (-15 & -30 mmHg)

Methodology Significance

PDA - T13 0.00001
Finapres pulse pressure 0.636

Cuff pulse pressure 0.214
Heart rate (Finapres) 0.02

A receiver operating characteristic (ROC) analysis of the intra-subject ability of the
four methodologies to resolve LBNP-induced differences of −15 mmHg and atmospheric
pressure, and −30 mmHg and atmospheric pressure revealed similar differences. In Fig.
8 we present the results.

An important question is whether T13 is indeed a pulse pressure equivalent or whether
it simply tracks the changes in heart rate referred to in Fig. 4 and Fig. 9 presents a
comparison of pulse pressure, as measured with the cuff, as a function of T13 and heart
rate, as measured with the Finapres, as a function of T13. While T13 correlates linearly
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Figure 6: Comparison of the individual results for cuff-based pulse pressure (left graph),
Finapres-based pulse pressure (center), and PDA-based T13 measurements, for subject
# 3. The right panels present the simultaneously obtained T13 delay times between
the primary left-ventricular ejection pulse and the iliac reflection pulse recorded on the
subjects middle member of the middle digit. (from [31])).

Figure 7: Overall results for pulse pressure obtained with the automatic cuff (graph A),
the PDA pulse pressure-equivalent parameter T13 (B) and the Finapres (C). (from [31]).

with the pulse pressure determined using the cuff (0.19Ã − T13 (milliseconds) +2.58,
R2 = 0.98, p < 0.0001) a second order model is required to obtain a correlation with
heart rate (−1.51 + T13 (milliseconds) × 0.015− 2.24526E − 5× T13E2 (milliseconds)).

3.2 Comparison with model predictions

In Fig. 10 we present an overlay of the experimental results and the models predictions.
The experimental data, all averages from 15 subjects, are the T13 values obtained from
each LBNP stage as well as the corresponding pulse pressure values as determined with
the Finapres. Since systole did not change appreciably for any of the subjects, we use
the average value of 120 mmHg throughout. Consequently, as observed experimentally,
changes in pulse pressure are driven entirely by changes in diastole. The most important
aspect of the agreement between the model and data, as presented in Fig. 10, are the
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Figure 8: ROC analysis of the comparative intra-subject sensitivity/specificity of T13,
heart rate, cuff pulse pressure, and Finapres pulse pressure to resolving the difference of
-15 mmHg versus -30 mmHg LBNP relative to atmospheric pressure. Respectively the
areas under the curve are 0.83, 0.66, 0.59, and 0.55. (from [31]).

arterial parameter assumptions that are required to achieve it. The single dominant
factor that determines the response of T13 to pressure changes is the pressure/arterial
pulse velocity response of the different arterial sections that the systolic pulse and its two
central reflections traverse. Furthermore the range of relative pressure/velocity response
curves that is possible, given the constraints of the experimental data, is very narrow. Fig.
11 presents the relative response curves of the three arterial segments that constitute the
pulse pathways, the thoracic aorta, the abdominal aorta, and the arm complex arteries.
Clearly the model at this stage uses a significant simplification of the arterial path sections
and the response curves presented represent averages over these pathways. While more
details will be introduced in future versions of the model the aim here is to demonstrate
that the basic physical picture hypothesized by the PDA model matches observations. Fig.
12 displays the response characteristics of the reflection coefficient of the renal reflection
site, as predicted by the model. While the starting values of the pressure/velocity curves
for the arm complex arteries as well as the thoracic/abdominal aorta were based on
published arterial pulse propagation velocities, [12] the results of the LBNP experiments
provide an opportunity to deduce the relative dynamic response characteristics of the
different sections, which are not readily available as they have not been the subject of
research interests in a long time. In order to obtain the fit shown in Fig. 10, a different
dynamic behavior of the arm complex relative to that of the central arteries had to be
modeled. Specifically, while the arm complex arteries required a distinct exponential
response characteristic, the simulated central arteries response, in the blood pressure
range under consideration, was, in the case of the thoracic aorta, essentially linear and
in the case of the abdominal aorta, of lower gain. These results are presented in Fig.
11. And it is this difference in dynamic response that enables the model to generate T13
curves whose slopes match those observed. In contrast, changes in starting values only
shifted the family of curves in parallel up or down in but did not change the relative slopes
of the curves.
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Figure 9: Functional comparison of T13 with pulse pressure obtained from cuff (left), and
heart rate (right). (from [31]).

The other significant factor affecting the models prediction is the dynamic response
curve of the renal reflection coefficient R2 as a function of pressure (Fig. 12). Not surpris-
ingly, the dynamic response of the reflection coefficient becomes increasingly important at
higher pressures. The effect is clearly seen in the modification of the arrival time curves
of the component pulses, which are presented in the two graphs of Fig. 3. The left graph
corresponds to the arrival times with the R2 having the pressure response characteristic
shown in Fig. 12. The right graph displays the dramatically altered results, which would
yield a very poor fit with the observed delay times, for a constant reflection coefficient of
0.25.

4 Discussion

Before discussing the implications of what appear to be statistically significant correlative
results it is important to consider the hypothesis of whether they could be due to an un-
related experimental artifact, specifically the increasing abdominal compression with the
increasing LBNP pressures that has been reported [26]. Two arguments can be made to
refute this concern. If the increasing abdominal compression were to have progressively
given rise to a new reflection site between renal and iliac reflection sites, a new reflected
component pulse would have arisen between the # 2 and # 3 component pulses, progres-
sively increasing with each LBNP-induced abdominal compression stage. Such additional
central reflection sites have been observed by Kriz [20] in the context of aortic aneurysms.
We have observed the resulting additional component pulses of such aortic aneurysms in
the arterial periphery, a subject of future publication. However, as part of this work,
in none of the LBNP stages and in none of the subjects studied were such additional
component pulses observed.

A second argument is that the same response in T13 is observed in the case of actual
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Figure 10: Overlap of PDA T13 prediction and LBNP study data as a function of diastolic
pressure change. The line around which the data are grouped corresponds to systole =
120 mmHg. Adjacent lines correspond to +-5 mmHg. (from [31]).

Figure 11: Arterial pulse velocity profiles as a function of pressure, based on fit to exper-
imental results in Fig. 10.

hemorrhage, induced through blood donation of 1 pint. A just-completed study with 50
subjects, whose results will be published shortly, has confirmed the continuous decrease
of T13 as the blood donation progressed. Moreover, the decrease observed in the blood
donation experiment matched well the average decrease that was observed in the first
stage (−15 mmHg) of the LBNP results reported here, in line with the estimation of
central blood loss for that stage [22].

The results presented therefore support the hypothesis that the time delay between
the primary component pulse (# 1) and the iliac reflection pulse (# 3), T13, correlates
with pulse pressure and provide a first milestone in the validation of the PDA model. A
number of conclusions follow.

Any reflection sites in the arm complex arteries proximal to the radial/digital arteries
will not affect the pulse line shape that is observed there because any pulse reflections due
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Figure 12: Pressure response of R2, reflection coefficient of the junction of tho-
racic/abdominal aortic sections at the height of the renal arteries.

to such reflection sites will travel away from them and back toward the central arteries.
Their re-entry into the arm complex arteries could only be accomplished as re-reflections,
with dramatically reduced amplitudes that would be masked by the primary renal and
iliac reflections.

The hypothesis that the shape of the peripheral pressures pulse is predominantly de-
termined by reflections in the aorta may seem surprising and will no doubt be gradually
accepted. On the one hand maneuvers that are known to modify the thoracic pressure
profile, such as valsalva that selectively modulates the renal reflection site and therefore
the # 2 component pulse, [17] provide a ready method to demonstrate the critical impor-
tance of the central reflection sites. Alternatively manipulative experiments in the arterial
periphery could be suggested to support or challenge the hypothesized physical picture.
One possibility is partial occlusion of a femoral artery, with pulse monitoring distally on,
for example, the pedal artery. Particularly since in the legs the # 2 and # 3 component
pulses are diminished because they are re-reflections, it should be possible to observe the
additional component pulse that would originate from the partial occlusion site, travel to
the iliac reflection site and reflect there toward the distal monitoring site.

Movement of the occlusion site along the leg arteries should change the timing of the
additional component pulse relative to the pulse envelope.

A relevant physiological phenomenon is pressure pulse amplification of the arterial
periphery that is attributed to the taper of the arterial walls as well as their changing
wall composition relative to the core arteries. The important realization here is that,
while the arterial pressure pulse is temporally compressed and increased in amplitude,
these changes to the pulse envelope are, in the absence of arterial dilation or constriction,
static. This is the basis of using the validated transfer function approach [12] that uses
pulse shapes obtained in the arterial periphery to predict central artery pulse shapes and
blood pressures. It is the central artery dynamics that determine the peripheral pulse in
the transfer function model. In the PDA model, which offers a concrete physical model
instead of a generalized Fourier-based inverse filter, it is also the central artery dynamics
that dominate the relationships between the components. Significant arterial dilation and
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constriction does modify the component pulse relations, and this is an object of current
study.

The differential pressure/velocity response curves predicted by the model for the dif-
ferent arterial sections that the iliac reflection pulse (# 3) traverses are not very surpris-
ing. The change-over from elastin, the main component of central artery walls [12] to the
tougher collagen, which characterizes arterial wall content in the periphery, is well known.
Consequently one would expect, particularly in the case of the thoracic aorta that has
the slowest arterial pressure pulse propagation velocity (see starting value of 4.2 m/s), a
much diminished increase in the velocity with rising pressure.

The regard to the changes in the arrival times of the component pulses (Fig. 3) with
a change in the pressure response characteristic of the R2 (renal) reflection coefficient,
this relation might at first appear surprising. The result is however less surprising after
considering that the pressure response dynamic of R2 redistributes amplitude between the
component pulses; in particular that it increases the P2 (renal) reflection pulse amplitude
while reducing the P3 (iliac) pulse amplitude as the pressure rises. With lowered pressure
amplitude, P3 travels slower than it would if it were not losing amplitude to P2 because of
the pressure dependent R2 coefficient. The agreement with observed results consequently
provides a rather compelling argument in support of the dynamic response of R2. The
point was made earlier that the differential pressure between P1, the primary ejection
pressure pulse, and P3, the iliac reflection pulse, is not exactly pulse pressure, that is the
difference between the full pulse arterial height and the diastolic floor, but about 60− 70
percent of it. Consequently the question arises how useful the differential pressure, which
is reflected in the time interval T13, is in approximating pulse pressure. As clarified
by Fig. 2, T13 corresponds to the pressure amplitude difference between the primary
ejection pulse (# 1) and the iliac reflection (# 3). From the graph one readily sees that
this amplitude difference covers exactly the most important part of the response curve that
relates pressure to velocity, this being the exponential response section. The amplitude of
the (# 3) pulse is entirely in the diastolic regime, which is linear, as Anliker showed. [32]
However, it is the exponential section that is responsible for 95 percent of the dynamic
pressure/velocity response characteristics, the rest being simply a linear offset.

The head plays a much diminished role in regard to pressure pulse reflections that
are observed at the arterial periphery of the arm. Arterial pressure pulse reflections
that return via the carotid arteries will, upon entering the aortic arch and traveling
along the descending thoracic, re-reflect off the reflection site in the vicinity of the renal
arteries. Assuming a reflection coefficient on the order of 17 percent, the amplitude of
such a re-reflection will be on the order of 3 percent of the primary peak amplitude, and
consequently be masked by the much larger pressure primary pulse reflections # 2 and #
3.

The PDA model ties together recent related observations by others. The fact that
the ratio of the amplitudes of the # 2 (P2) and # 1 (P1) pulses correlates with systolic
pressure is not surprising in light of the results obtained by Takazawa et. al., [27] Takada
et. al., [28] and Imanaga et al. [29] In Fig. 13, which displays the 10-pulse average
of the arterial digital pressure pulse of a 21 y. male athlete, we also present the second
derivative of the arterial pulse. Takazawa et. al. labeled the different inversions, waves, of
this second derivative trace as indicated in Fig. 13. The results of several studies suggest
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that the ratio d/a correlates with blood pressure, along with many other physiological
parameters [27-28]. Comparative inspection of the two traces establishes that the waves
a and d are temporally in very similar positions to P1 and P2, respectively. A parameter
introduced by Bartolotto [25] that incorporates very similar definitions of P1 and P2 as
the PDA model was also found to correlate with systolic pressure. This parameter is the
augmentation index of the photoplethysmograph, PTG (AUGI), and it is defined as (P2-
P1)/MA, where P2 and P1 are the amplitudes of the primary and second systolic peaks
in the photoplethysmograph, respectively, and MA is the maximum envelope amplitude.
These correlative results support the PDA model, which supplies the physical explanation
both for the origin of the component pulses as well as why the correlation of the relative
amplitudes of these component pulses with systolic pressure exists. As with the PDAs

Figure 13: Arterial pressure pulse line shape (black trace, 10-pulse average), and its
second derivative (gray trace), of a 21 y. male athlete collected at the middle phalange
of the middle finger. The pulse line shape displays distinct pulsatile features labeled # 1,
# 2, # 3. While the # 1 is the direct pass due to left ventricular ejection, the rest of the
pulse envelope is due to arterial reflections. Indicative of distinct arterial pulse reflection
sites is the fact that the reflected wave exhibits pulsatile components ( # 2, # 3, and
beyond) that feature comparable temporal extents as the primary ejection-related feature
# 1. The inversions of the second derivative trace are labeled according to the convention
introduced by Takada et. al. (from [31]).

P2P1 parameter, others have suggested measures that utilize the same time interval corre-
sponding to T13 and have somewhat comparable physical interpretations. Millasseau [30]
labels the time delay PPT in the digital volume pulse and suggests that it corresponds to
the transit time of pressure waves from the root of the subclavian artery to the apparent
site of reflection in the lower body and back to the subclavian artery. The reason for
choosing the subclavian artery as a starting and ending point is however unclear, since
the pressure wave does not originate there. If, on the other hand, the subclavian artery
were to give rise to the # 3 pressure pulse as a reflection site, the amplitude of the iliac
pulse would be dramatically lower than what is observed (20−40) percent of the primary
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peak) at the radial or digital artery. Succinctly put, the pulse would have traveled from
the left ventricle to the subclavian artery, reflected there at some reflection site, then to
travel to the iliac reflection site. It would return from there as a re-reflection pulse with
commensurately much reduced amplitude, an unlikely scenario.

A significant benefit of measuring T13 over pulse pressure directly is its higher reso-
lution and sensitivity.

The results indicate the equivalence of a change of about 200 milliseconds in T13 to a
variation of about 8 mmHg in pulse pressure over the entire range of a simulated central
blood loss in excess of 1 liter for this cohort of fit and relatively young subjects. The results
therefore indicate that the PDA technology is capable of resolving small changes in pulse
pressure, a feat that sphygmomanometers are not well suited for. Given the suggestion
by others that pulse pressure can be considered as a surrogate for stroke volume and
therefore as a means to track loss of blood volume in trauma patients, [1] the accurate
monitoring of pulse pressure could be a vital component in predicting hemorrhagic shock.

The potential benefits of utilizing T13 in detecting small changes in pulse pressure,
coupled with the small size of the wireless CareTaker hardware, which weighs on the order
of 5 oz, and the fact that it tracks blood pressure at low coupling pressures, makes the
system attractive for the monitoring of patients at risk for internal hemorrhage. A benefit
of such field-based monitoring is that internal hemorrhage could be detected well before
hemodynamic collapse, making timely intervention feasible.

Currently studies are underway to further validate the PDA model by simultaneously
correlating intra-aortic blood pressure with the peripherally measured PDA parameters
T13 and P2P1.

5 Conclusions

We have presented a new physical model of the propagation of the arterial pressure pulse
and its reflections as well as a comparison of the predictions of the model with exper-
imentally obtained pulse parameters and conventionally obtained blood pressures. The
agreement of observations and measurements provides a preliminary validation of the
model which in turn could provide a renewed impetus in the study of the human arterial
pressure pulse. The model is based on few, physical, assumptions because it proposes
that the structure of the pulse is due to it is readily identifiably arterial pulse reflection
sites. As a result it is also readily testable.
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Abstract
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1 Introduction

Discrete mathematical models arise directly from experiment or by the use of the Poincaré
section for the study of continuous models. Two of these models are the Hénon [1] and
Lozi [2] maps given by, respectively:

H(x, y) =

(
1 − ax2 + y

bx

)
and L(x, y) =

(
1 − a |x| + y

bx

)
. (1)

The H mapping gives a chaotic attractor called the Hénon attractor, which is obtained
for a = 1.4 and b = 0.3 as shown in Fig. 1(a). There are many papers that discuss the
original Hénon and Lozi maps such as [3-6]. Moreover, it is possible to change the form
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of the Hénon mapping H to obtain other chaotic attractors [2-7-8]. Applications of these
maps include secure communications using the notions of chaos [11-12]. The Lozi map L
is a 2-D invertible iterated map that gives a chaotic attractor called the Lozi attractor,
which is obtained for a = 1.4 and b = 0.3 as shown in Fig. 1(b). It is therefore interesting
to ask if there is a chaotic system that can unify these two chaotic systems and realize
the continued transition from one to the other. This paper provides a positive answer to
this question and reveals a surprising property of the transitional systems.

2 Robust chaos and its applications

Robust chaos is defined by the absence of periodic windows and coexisting attractors in
some neighborhood of the parameter space, since the existence of these windows in some
chaotic regions implies that small changes of the parameters would destroy the chaos.
This effect implies the fragility of this type of chaos. Contrary to this situation, there
are many practical applications such as in communications and spreading the spectrum
of switch-mode power supplies to avoid electromagnetic interference [13-14] where it is
necessary to obtain reliable operation in the chaotic mode and thus where robust chaos
is required. A practical example can be found from electrical engineering to demonstrate
robust chaos as shown in [10]. The occurrence of robust chaos in a smooth system is
proved and discussed in [16] along with a general theorem and a practical procedure for
constructing S-unimodal maps that generate robust chaos. This result is contrary to the
hypothesis that robust chaos cannot exist in smooth systems [10]. On the other hand,
many methods are used to search for a smooth and robust chaotic map, such as in [15],
where a one-dimensional smooth map that generates robust chaos in a large domain of
the parameter space is presented. In [17], simple polynomial unimodal maps that show
robust chaos are constructed. Other methods are given in [16-18].

3 The unified chaotic system that contains the Hénon

and the Lozi mappings

Since practical applications of chaos require the chaotic orbit to be robust, we introduce
in this paper a new unified chaotic system that reduces to the original Hénon and Lozi
systems [1-2] as two extremes and to other systems as a transition in between, and which
has robust homoclinic chaos over a portion of its key system parameters. The proposed
unified chaotic model is a piecewise smooth map of the plane defined by:

U (x, y) =

(
1 − 1.4fα (x) + y

0.3x

)
, (2)

where 0 ≤ α ≤ 1 is the bifurcation parameter and the function fα is given by:

fα (x) = α |x| + (1 − α)x2. (3)

It is easy to remark that for α = 0, one has the original Hénon map, and for α = 1,
one has the original Lozi map, and for 0 < α < 1, the unified chaotic map (2) is chaotic
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with different kinds of attractors. The Lyapunov exponents and bifurcation diagram are
shown in Fig. 2. We remark that the unified chaotic map (2) is a piecewise smooth map
and due to the shape of the vector field U of the unified chaotic map (2), the plane can
be divided into two regions denoted by:

D1 =
{
(x, y) ∈ R2/ x < 0

}
(4)

D2 =
{
(x, y) ∈ R2/ x > 0

}
. (5)

Let us define:
A =

{
(x, y) ∈ R2/ x = 0

}
, (6)

which denotes a smooth curve that divides the phase plane into two regions D1 and D2,
so that the unified chaotic map (2) can be rewritten as follow:

U(x, y) =

⎛
⎝

{
1. 4 (α − 1) x2 + 1. 4αx + y + 1, if (x, y) ∈ D1

1. 4 (α − 1)x2 − 1. 4αx + y + 1, if (x, y) ∈ D2

0.3x

⎞
⎠ , (7)

where in each of these regions the system (2) is a quadratic map. Notably, the unified
system (2) has some special features and advantages as follows:

(1) System (2) is chaotic when 0 ≤ α ≤ 1.
(2) System (2) connects the Hénon and the Lozi maps and realizes the entire transition

spectrum from one to the other.
(3) The control parameter α in system (2) reveals the evolution of dynamical behaviors

from the Hénon to the Lozi attractors.
(4) System (2) has robust chaotic attractors for 0.493122734 ≤ α < 1, while it is

absent for α = 0 and α = 1.

4 Numerical simulations

In this section, the dynamical behaviors of the unified chaotic system (2) will be inves-
tigated numerically. For 0 ≤ α ≤ 1, the unified chaotic system has two kinds of chaotic
orbits: Hénon-like chaotic attractors over the first portion of the interval [0, 1[ and a Lozi-
like chaotic attractor over the second portion of the interval ]0, 1] as shown in Fig. 3(a)
and (c). It seems that this phenomenon is related to the shape of the function fα, where
for values of α close to zero, the function fα given in (3) behaves like the quadratic term
x2, while the values of α close to unity the function fα behaves like the absolute value
function |x| , as shown in Fig. 3(b) and (d). This explains the occurrence of the two kinds
of chaotic attractors mentioned above.

5 A rigorous proof of the robustness of the homo-

clinic chaos

In this section, we begin by studying the existence of the fixed point of the U mapping
in order to determine the associated normal form for the unified chaotic map (2), which
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(a) (b)

Figure 1: (a) The original Hénon chaotic attractor obtained from the H mapping with its
basin of attraction (white) for a = 1.4 and b = 0.3. (b) The original Lozi chaotic attractor
obtained from the L mapping with its basin of attraction (white) for a = 1.4 and b = 0.3.

permits us to prove rigorously the occurrence of robust homoclinic chaos, where we exclude
the values α = 0 and α = 1 since both the Hénon and Lozi mapping are studied in detail
in several works and in the references therein. We will show that if 0 ≤ α < 1, then the
unified chaotic map (2) has two fixed points given by:

P1 = (x1, 0.3x1) ∈ D1 and P2 = (x2, 0.3x2) ∈ D2, (8)

where ⎧⎪⎪⎨
⎪⎪⎩

x1 =
−0.7α+0.35+

√

−7. 56α+1. 96α2+6. 09

2

1. 4(α−1)

x2 =
0.7α+0.35−

√

−3. 64α+1. 96α2+6. 09

2

1. 4(α−1)
.

(9)

Obviously, the fixed points of the unified chaotic map (2) are the real solutions of the
system:

1 − 1.4fα (x) + y = x and y = 0.3x. (10)

Hence one may easily obtain the two equations:

1.4 (α − 1)x2 + (1.4α − 0.7)x + 1 = 0 for x < 0 and y = 0.3x (11)

1.4 (α − 1)x2 − (1.4α + 0.7) x + 1 = 0 for x > 0 and y = 0.3x. (12)

If 0 ≤ α < 1, then 1.4 (α − 1) < 0, and the discriminant of the first equation of (11) is
−7.56α+1.96α2 +6.09 > 0. Thus, one can easily conclude that the only negative solution
of the first equation of (11) is:

x1 =
−0.7α + 0.35 +

√

−7.56α+1.96α2+6.09
2

1.4 (α − 1)
< 0. (13)

On the other hand, the discriminant of the first equation of (12) is −3.64α + 1.96α2 + 6.
09 > 0 for all 0 ≤ α < 1. Thus, one can easily conclude that the only positive solution of
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Figure 2: (a) Variation of the Lyapunov exponents of the unified map (2) for 0 ≤ α ≤ 1.
(b) The bifurcation diagram of the unified chaotic map (2) for 0 ≤ α ≤ 1.

the first equation of (12) is:

x2 =
0.7α + 0.35 −

√

−3.64α+1.96α2+6.09
2

1.4 (α − 1)
> 0. (14)

Finally, the unified chaotic map (2) has two simultaneous fixed points defined for 0 < α <
1 as P1 = (x1, 0.3x1) ∈ D1 and P2 = (x2, 0.3x2) ∈ D2.

The Jacobian matrix of the unified chaotic map (2) evaluated at a point (x, y) in the
region D1 is given by:

J1 (x, y) =

(
1. 4α − 2. 8x + 2. 8xα 1

0.3 0

)
, (15)

and at a point (x, y) in the region D2 the Jacobian matrix is given by:

J2 (x, y) =

(
2. 8xα − 1. 4α − 2. 8x 1

0.3 0

)
. (16)

Thus, at P1 one has:

J1 (P1) =

(
0.7 +

√
1. 96α2 − 7. 56α + 6. 09 1

0.3 0

)
. (17)
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(a) (b)

(c) (d)

Figure 3: (a) The transition Hénon-like chaotic attractor obtained for the unified chaotic
map (2) with its basin of attraction (white) for α = 0.2. (b) The graph of the function
f0.2. (c) The transition Lozi-like chaotic attractor obtained for the unified chaotic map
(2) with its basin of attraction (white) for α = 0.8. (d) The graph of the function f0.8.

The eigenvalues of J1 (P1) are⎧⎪⎪⎨
⎪⎪⎩

λ1 =
√

1. 96α2
−7. 56α+6. 09+

√
1. 96α2

−7. 56α+1. 4
√

1. 96α2
−7. 56α+6. 09+7. 78

2
+ 0.35

λ2 =
√

1. 96α2
−7. 56α+6. 09−

√
1. 96α2

−7. 56α+1. 4
√

1. 96α2
−7. 56α+6. 09+7. 78

2
+ 0.35,

(18)

and at P2 one has:

J2 (P2) =

(
0.7 −√

1. 96α2 − 3. 64α + 6. 09 1
0.3 0

)
. (19)

The eigenvalues of J2 (P2) are:⎧⎪⎪⎨
⎪⎪⎩

ω1 =
−

√

1. 96α2−3. 64α+6. 09+

√
1. 96α2−3. 64α−1. 4

√

1. 96α2−3. 64α+6. 09+7. 78

2
+ 0.35,

ω2 =
−

√

1. 96α2
−3. 64α+6. 09−

√
1. 96α2

−3. 64α−1. 4
√

1. 96α2
−3. 64α+6. 09+7. 78

2
+ 0.35,

(20)

In the case of two-dimensional piecewise smooth maps, it is possible to choose an appropri-
ate coordinate transformation so that the choice of axis is independent of the parameter.
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In so doing, the normal form of map (1) is given by [9]:

N(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
τ1 1
−δ1 0

)(
x
y

)
+

(
0
1

)
µ, if x < 0,

(
τ2 1
−δ2 0

)(
x
y

)
+

(
0
1

)
µ, if x > 0,

(21)

where µ is a parameter, and τi, δi, i = 1, 2 are the traces and determinants of the corre-
sponding matrices of the linearized map in the two subregion D1 and D2 evaluated at P1

and P2 respectively, and they are given by:

⎧⎨
⎩

τ1 = 0.7 +
√

1. 96α2 − 7. 56α + 6. 09,

τ2 = 0.7 −√
1. 96α2 − 3. 64α + 6. 09,

δ1 = δ2 = −0.3,

(22)

It is shown in [10] that a robust homoclinic chaos (i.e. the existence of an infinity of
homoclinic intersections between the two subregions D1 and D2 ) occurs in the piecewise
smooth map of the form (21) when:

{
τ1 > 1 + δ1, and τ2 < − (1 + δ2) ,

δ1 < 0, and − 1 < δ2 < 0,
(23)

and the condition:
λ1 − 1

τ1 − 1 − δ1

>
ω2 − 1

τ2 − 1 − δ2

, (24)

where the parameter range for boundary crisis is given by:

(λ2 − τ2)λ1 − τ1 + τ2 + δ1 > 0, (25)

because δ1 = δ2, where the inequality (25) determine the condition of stability of the
chaotic attractor. However, if the first condition (24) is not satisfied, then the condition
of existence of the chaotic attractor changes to:

ω2 − 1

τ2 − 1 − δ1

<
(τ1 − δ1 − λ2)

(τ1 − 1 − δ1) (λ2 − τ2)
, (26)

because δ1 = δ2. Finally, the formulas (18), (20), and (22), and the inequalities (23), (24),
and (25), or the inequalities (23), (25), and (26) if they are satisfied, determine rigorously
the region for the parameter α where the unified map (2) has robust homoclinic chaos.

6 Discussion

First, it is clear that the conditions of (23) are satisfied for all 0 < α < 1. Second, it is
difficult to solve rigorously the conditions for existence of the chaotic attractor (24) or
(26) and its condition for stability (25) since these inequalities contain complicated square
formulas. Hence, we use numerical estimates of the portion of the range 0 ≤ α < 1, for
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Figure 4: Critical curves corresponding to the conditions (24), (25) and (26).

which robust homoclinic chaos occurs in the unified piecewise smooth map (2). Here we
exclude the value α = 0, since there is no robust chaos in the Hénon map. We also exclude
the value α = 1, since both fixed points given in (9) are not defined for this value.

Second, let us consider the critical curves corresponding to the conditions (24), (25),
and (26) as follows:

⎧⎪⎨
⎪⎩

C1 : λ1−1

τ1−1−δ1
− ω2−1

τ2−1−δ2
= 0,

C2 : (τ2 − λ2)λ1 + τ1 − τ2 − δ1 = 0,

C3 : ω2−1

τ2−1−δ2
− δ1(τ1−δ1−λ2)

(τ1−1−δ1)(δ2λ2−δ1τ2)
= 0,

(27)

From Fig. 4 we remark that the curve (C2) has an intersections with the axis y = 0, at
α = 0.0866592234, then conditions (24) holds for α ∈ [0, 0.0866592234] , while the curve
(C1) does not hits the axis y = 0, then conditions (25) does not holds for all 0 ≤ α < 1,
and the curve (C3) hits the axis y = 0 also one time at α = 0.493122734, then condition
(26) holds when α ∈ [0.493122734, 1[ , where the Newton method for finding roots of an
algebraic equation was used with an error of 10−6. Thus, the homoclinic chaos presented
by the unified chaotic map (2) is robust not stable when α ∈ [0.493122734, 1[ , because the
condition (25) does not hold in this interval. The chaotic attractor cannot be destroyed
by small changes in the parameters, since small changes in the parameters can only cause
small changes in the Lyapunov exponents. Hence, the percentage for the parameter
0 ≤ α < 1, in which the map (2) converges to a robust chaotic attractor is approximately
50.6 88 percent, this result is also verified numerically by computing Laypunouv exponents
and bifurcation diagram as shown in Fig. 2.

For α < 0.493122734, the chaos is not robust in some ranges of the variable α, because
there are numerous small periodic windows as shown in Figs. 5 (a), 5 (b) for example
the period-8 window at α = 0.025. Also, for α = 0.114, there is some periodic windows.
We remark, also the existence of some regions in the α−line where the largest Lyapunouv
exponent is positive, but this does not guaranty the unicity of the attractor, contrary
in the case where α ∈ [0.493122734, 1[, where there is guaranteed that the attractor is
unique, due to the analytical expressions (23), (24), (25), and (26). When α approaches
0, there is a break of smoothness and the dynamics is too chaotic and presents some
chaotic attractors very similar to the original Hénon attractor shown in Figs. 3 (a).
Finally, it is interesting and surprising that the unified system (2) has such a property
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Figure 5: (a) Variation of the Lyapunov exponents of the unified chaotic map (2) for
0.02 ≤ α ≤ 0.03. (b) The bifurcation diagram of the unified chaotic map (2) for 0.02 ≤
α ≤ 0.03, showing a period-8 attractor obtained for α = 0.025.

for an intermediate α while it was absent for α = 0 or α = 1 since the Hénon map
is a quasiattractor and the Lozi map is a Lorenz-type attractor. These types of chaotic
attractors have no robust homoclinic chaos over all portion of their key system parameters.

7 Conclusion

We have reported some results relevant to a new piecewise smooth 2-D discrete chaotic
map as a unified chaotic system that contains the original Hénon and the Lozi systems
as two extremes and other systems as a transition in between, and which has robust
homoclinic chaos over a portion of its key system parameters, while this property is absent
for the two systems at its extremes. Dynamics of piecewise continuous (smooth) mappings
are a newly emerging area of research, due to the absence of continuity (smoothness), exist
theories/methods in dynamical systems are not directly applicable, so new methods are
needed for this important area.
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